

Learning LEGO
MINDSTORMS EV3

Build and create interactive, sensor-based robots using
your LEGO MINDSTORMS EV3 kit

Gary Garber

BIRMINGHAM - MUMBAI

Learning LEGO MINDSTORMS EV3

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1200115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-502-9

www.packtpub.com

Cover image by Gary Garber

www.packtpub.com

Credits

Author
Gary Garber

Reviewers
Barbara Bratzel

Michael duPont

Jeroen Hartsuiker

David Lechner

Diego "Kartones" Muñoz

Geoff Shannon

Commissioning Editor
Akram Hussain

Acquisition Editor
Neha Nagwekar

Content Development Editor
Susmita Sabat

Technical Editor
Vivek Arora

Copy Editor
Laxmi Subramanian

Project Coordinator
Neha Thakur

Proofreaders
Simran Bhogal

Stephen Copestake

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Hemangini Bari

Mariammal Chettiyar

Monica Ajmera Mehta

Graphics
Valentina D'silva

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Gary Garber teaches physics, math, and engineering at Boston University
Academy. Gary is the president of the New England Section of the American
Association of Physics Teachers and has led dozens of professional development
workshops in education at both the local and national levels.

Gary runs the Boston University FIRST Robotics program. He has run and hosted
numerous robotics workshops in VEX, Tetrix, and LEGO platforms. He has run
dozens of LEGO robotics tournaments and spoken on robotics education at both
local and national conferences. His robotics team has worked with Engineers
Without Borders, NASA, and the National Science Teachers Association on a
variety of engineering and education projects.

He is currently an educational consultant, working to develop new software tools
for the classroom, at the Tufts Center for Engineering Education and Outreach,
which is a pioneer in LEGO Robotics Education. He is the author of Instant LEGO
MINDSTORMS EV3, Packt Publishing. He currently resides in Massachusetts, US.
When he is not playing with LEGO, robots, or toy trains, he enjoys spending time
with his wife, Catalina, and their two children, Alejandro and Leonardo.

I would like to thank the people of the Tufts Center for Engineering
Education and Outreach for teaching me about LEGO robotics and
helping make this book possible, including Chris Rogers, Ethan
Danahy, Barbara Bratzel, and Bill Church. I would like to thank the
students of Boston University Academy, in particular, the class of
2016, who remind me of how much fun students of all ages can have
with LEGO. I would also like to thank Alejandro and Leonardo for
reteaching me how to play with LEGO and making me watch the
LEGO movie over and over again.

About the Reviewers

Barbara Bratzel is a science teacher at the Shady Hill School, a PreK-8 independent
school in Cambridge, Massachusetts. In addition, she is a consulting teacher at the
Center for Engineering Education and Outreach at Tufts University. Her most recent
book, STEM by Design, a collection of classroom activities using the LEGO EV3,
was published in February 2014.

Michael duPont is a maker, pilot, and theatre technician based in Central Florida.
He recently graduated from Centre College in Danville, Kentucky. His specialties
include microcontrollers such as the Raspberry Pi and Arduino, robotics, wearables,
and other small electronics. You can find many of his open source projects on GitHub
and on his website (http://mdupont.com/).

Jeroen Hartsuiker (born in 1971) played with LEGO Technic until his early teens.
His dark ages (time when a person stops collecting and using the Danish bricks)
ended while visiting LEGOLAND Billund in 1998, when he attended a workshop
exploring the first generation of the MINDSTORMS Robotics Invention System.
Since then, he has owned and used every generation of the LEGO robot, and
he wrote courseware and delivered a presentation on how to control the
MINDSTORMS NXT robot using Microsoft® Robotics Developer Studio. He
occasionally contributes a module to the Great Ball Contraption (GBC) at LEGO
WORLD in the Netherlands. Furthermore, a MINDSTORMS robot is sometimes used
to make the software-development classes he teaches even more interesting. You can
visit his blog at www.dotnetjes.nl.

http://mdupont.com/
www.dotnetjes.nl

David Lechner works mostly as a freelance computer programmer and
occasionally as a "Mad Scientist" teaching robotics as an after-school program in
elementary schools. He also just completed his rookie year, coaching a FIRST LEGO
League team, and has devoted much of his time to reverse engineering the EV3
as a core contributor to the ev3dev project. Prior to being self-employed, he spent
8 years doing industrial automation in the water and wastewater industry. He
has a bachelor's degree in electrical and computer engineering from Oklahoma
State University.

Diego "Kartones" Muñoz, more commonly known by his nickname, Kartones,
is a multidisciplinary developer who lives in Madrid, Spain. Having worked for
more than 12 years with all kinds of desktop, mobile, and web applications, he
has used quite a few languages such as C++, C#, PHP, and more recently, Ruby
and JavaScript.

Regarding LEGO MINDSTORMS, he fell in love with RCX and then the NXT, both
of which he liked to code in C instead of the default firmware and brick system.
Now, with MINDSTORMS EV3, he seeks to code robot logic in Node.js. He's also
been a technical reviewer for LEGO Mindstorms EV3 Essentials, Packt Publishing.

He loves learning about anything he comes across and keeps a few blogs. He
sometimes speaks at events or user groups, and he would love to do more open
source work. He can be reached at http://portfolio.kartones.net.

I'd like to acknowledge my girlfriend and my cats, for without their
patience with my endless hours around computers and technology,
I wouldn't be so happy.

http://portfolio.kartones.net

Geoff Shannon has been an enthusiastic hardware hacker from a young age; his
first job was building automated production equipment with Provel Inc. He has a
bachelor's degree in computer science and recently attended a batch at Hacker School
in New York City. In late 2013, he started working with LEGO robots by exploring
the leJOS project and using it to run a Clojure REPL on his EV3. He currently lives in
Seattle, WA, working as a software engineer.

To see what Geoff is currently working on and thinking about, check out his blog at
www.zephyrizing.net. You can also follow him on Twitter at @RadicalZephyr.

www.zephyrizing.net

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Engineering Notebook	 7

The engineering design process	 7
Content Editor features	 9
New pages and page actions	 13
Computer-aided Design and building instructions	 14

LEGO Digital Designer	 15
LDraw	 16

Commenting on your code	 18
Summary	 19

Chapter 2: Mechanical Design	 21
Mechanical advantage	 21
Motors	 24
Large motors and gears	 25
Writing a program	 28
Bevel gears at right angles	 30
Worm gear	 34
Using wires and parallel threads	 39
Summary	 42

Chapter 3: Drive Train and Chassis	 43
Chassis	 43
Skid-bot with the Retail kit	 52
Caster-bot with the Educational kit	 58
Tread-bot with the Retail kit	 62
Tread-bot with the Educational kit	 67
Programming the robot to move forward	 70
Summary	 72

Table of Contents

[ii]

Chapter 4: Sensors and Control	 73
Using sensors	 74
Programming blocks	 74
LEGO EV3 sensors	 76

Touch Sensors	 76
Color Sensors	 80
Motor Rotation sensors	 85
Gyro Sensors	 88
Ultrasonic motion sensors	 90
Infrared Sensors	 92

Third-party sensors	 94
Dexter Industries	 95
Mindsensors	 96
HiTechnic sensors	 97
MATRIX motor controllers and metal parts	 101
Vernier sensors	 102

Summary	 104
Chapter 5: Interacting with EV3	 105

Push buttons	 105
IR remote buttons	 110
Bluetooth control	 111
Smart device control	 112
Wi-Fi control	 114
Summary	 115

Chapter 6: Output from EV3	 117
Display	 117
Image Editor	 119
Display data	 121
Brick lights	 122
Legacy NXT/RCX lights	 124
Sound	 125
Music	 127
Summary	 127

Chapter 7: Advanced Programming	 129
Loop and the Motor Rotation sensors	 129
Loop and the Gyro Sensor	 130

Troubleshooting with the Gyro Sensor	 132
Switch or two-level controller	 134
Three-level controller	 137

Table of Contents

[iii]

Subroutines or My Blocks	 138
Arrays	 144
Summary	 148

Chapter 8: Advanced Programming and Control	 149
Distance controller	 149
Infrared versus Ultrasonic	 150
Proportional algorithm	 152
Line following using the Color Sensor	 155
Setpoint for line tracking	 161
Two-level or bang-bang controller	 162
Proportional line follower	 164

Entering gain and speed	 164
PID controller	 167
Gyro Sensor	 170
IR sensor navigation and beacon tracking	 172
Tracking a circle	 173
Triangulation	 174
Summary	 177

Chapter 9: Experiment Software and Data Logging	 179
Data logging software	 179
Improving dead reckoning	 180
Analyzing gain constants	 187
Graphical programming	 189
Other bang-bang controllers	 192
Summary	 194

Chapter 10: Other Programming Languages	 195
LabVIEW	 196

Front Panel and Block Diagram	 197
Programming blocks	 199
Loops	 200
Line following VI	 201
Robot tools	 203
Data	 203
Front Panel and clean Block Diagrams	 206
SubVIs	 208

RobotC	 210
Simple code	 212
Commands	 214
Variables	 216

Table of Contents

[iv]

Remote control	 217
Graphical programming	 218

Summary	 219
Chapter 11: Communication between Robots	 221

Enabling communication	 221
Messaging	 226

Follow the leader	 226
Maintain a distance	 227
Search and rescue	 229
Completing the search	 236

Summary	 237
Chapter 12: Advanced Robot – Gyro Boy	 239

Concept of a balancing robot	 240
The Gyro Boy model	 240

Sensor feedback	 242
Programming bugbears	 243
The main program	 245
The control program	 248
The RST My Block	 251
The gOS My Block	 251
The GT My Block	 255
The GG My Block	 255
The GM My Block	 256
The EQ My Block	 257
The cntrl My Block	 259
The CHK My Block	 260
Summary	 261

Index	 263

Preface
Welcome to Learning LEGO MINDSTORMS EV3.

The LEGO MINDSTORMS EV3 is a programmable LEGO brick that can control
motors and receive feedback from a wide range of sensors. In this book, you will
learn how to write programs in the LEGO MINDSTORMS EV3 software. This
book is a practical guide that will show you how to advance beyond the basic
lessons included in your EV3 kit, combine core programming commands, and
implement tested design principles when building your own robot using the LEGO
MINDSTORMS EV3 kit. You will become familiar with resources beyond your EV3
kit and enhance your robot designs.

The MINDSTORMS EV3 kit contains over 500 plastic interlocking parts. These parts
are made with high-precision moulds. The LEGO Technic bricks in your kit include
beams, axles, pines, gears, shafts, and bushings that will allow you to design a wide
variety of robots. The LEGO bricks in your LEGO MINDSTORMS kit are compatible
with all LEGO bricks made over the past 50 years.

The LEGO MINDSTORMS EV3 Intelligent Brick contains an ARM9 processor
running Linux. This allows you to program the brick with a wide variety of
languages, such as C, C++, Java, Python, and LabVIEW, but we will focus on the
official LEGO MINDSTORMS EV3 software. This software is a visual programming
language. Programming in the LEGO MINDSTORMS EV3 software consists of
dragging-and-dropping blocks onto a programming canvas. You draw wires to
connect the command blocks, such as command flow wires and data wires. There
are blocks that store data, control motors, acquire sensor data, and initiate flow
structures such as loops and switches. The beauty of a visual programming language
is that with a programming hierarchy, you can create easy-to-follow programs where
you can visually see the entire program at once.

Preface

[2]

The EV3 Intelligent Brick connects to motors and a wide variety of sensors, which
LEGO builds via electrical wires, including Touch Sensors, Ultrasonic Sensors,
Light Sensors, Infrared Sensors, and Gyro Sensors. The motors have built-in shaft
encoders, which allow you to control exactly how far they turn. There is an even
larger array of sensors produced by third-party vendors that you can use with your
EV3. You can download and run your computer programs on the EV3 via a USB
cable, Bluetooth, or Wi-Fi. All these features will take your LEGO MINDSTORMS
EV3 beyond the category of a simple toy into an impressive robotics kit, which can
be used to explore your environment and navigate a complex set of obstacles.

What this book covers
Chapter 1, Engineering Notebook, covers how to use the Content Editor to keep a
multimedia record of your work building robots.

Chapter 2, Mechanical Design, covers how to use gears to increase either speed or
torque in your robots.

Chapter 3, Drive Train and Chassis, explains how to build a chassis and attach either
wheels or treads to create a moving robot.

Chapter 4, Sensors and Control, covers how to use sensors to receive feedback from
your environment.

Chapter 5, Interacting with EV3, explains how to control your EV3 via the brick
buttons, the infrared beacon, Bluetooth, and Wi-Fi.

Chapter 6, Output from EV3, covers how to send output from the EV3 brick using the
display screen, lights, and the speaker.

Chapter 7, Advanced Programming, covers topics such as loops, switches, arrays,
My Blocks, and navigation using sensor feedback.

Chapter 8, Advanced Programming and Control, covers advanced navigation
techniques, including proportional controllers, PID controllers, course correction,
and triangulation.

Chapter 9, Experiment Software and Data Logging, explains how to use the data logging
features of the Educational Edition of the LEGO MINDSTORMS software.

Chapter 10, Other Programming Languages, provides a brief overview of RobotC
and LabVIEW, which are the next steps up from using the LEGO MINDSTORMS
software.

Preface

[3]

Chapter 11, Communication between Robots, explains how to send messages
via Bluetooth to allow two EV3 robots to communicate, send commands,
and collaborate.

Chapter 12, Advanced Robot – Gyro Boy, reviews and explains in depth the Gyro Boy
program written by LEGO.

What you need for this book
You will need a LEGO MINDSTORMS EV3 kit to build the robots in this book. There
are two versions of the kit: the LEGO MINDSTORMS EV3 Home Edition (Lego Set #
31313) and the LEGO MINDSTORMS EV3 Education Core Set (Lego Set # 45544). Both
of these kits can be purchased for about $350. I have provided build instructions in
this book, so you can build your robots no matter which set you have. The hardware
differences include the type of wheels, treads, and casters. Between the kits, most of
the pieces are the same but of different colors. The Home Edition has a Touch Sensor,
Color Sensor, Infrared Sensor, and Infrared beacon. The Education Edition has a Touch
Sensor, Color Sensor, Gyro Sensor, Ultrasonic Sensor, and a rechargeable battery.
You can buy all of these parts at http://shop.lego.com/en-US/ or any general
toy supplier.

If they did not come with your kit, you may want to buy the following:

•	 EV3 rechargeable battery (Part # 45501), which is $60
•	 EV3 Ultrasonic Sensor (Part # 45504), which is $30
•	 EV3 Infrared Sensor (Part # 45509), which is $30
•	 EV3 Infrared beacon (Part # 45508), which is $30
•	 EV3 Gyro Sensor (Part # 45505), which is $30

You will need the LEGO MINDSTORMS EV3 software. There are two versions
of the software. The Home Edition of the software is free and can be downloaded
from www.lego.com/mindstorms. The Education Edition of the software needs to
be purchased from LEGO Education for $100 from https://education.lego.com.
The main differences between the software editions are that the Education Edition
includes data logging software and the aesthetics of the splash page. This book was
written with version 1.1.1 of the LEGO MINDSTORMS EV3 software. At the time
of publication, version 1.1.1 is only available for the Home Edition. The Education
Edition is currently available in version 1.1.0. As a caution, in version 1.1.0 of the
LEGO MINDSTORMS software, Bluetooth communication for the EV3 brick is not
compatible with newer versions of Mac OS X.

http://shop.lego.com/en-US/
www.lego.com/mindstorms
https://education.lego.com

Preface

[4]

You will receive the most bang-for-your-buck by purchasing the Education Edition
of the hardware kit from LEGO Education and downloading the Home Edition of
the software. Besides http://www.amazon.com/, you will find the best secondary
market to purchase LEGO bricks at http://bricklink.com/.

Who this book is for
The LEGO MINDSTORMS software has built-in tutorials that explain very basic
usage of the software. The tutorials also provide high-end examples of what
can potentially be built with the MINDSTORMS kits. The programs written to
accompany these high-end examples are wonderfully complex, but lacking in
documentation. A major gap in the materials provided by LEGO is that they do
not help you past those first simple steps to build and program advanced robots.

This book is for anyone who wants to develop his or her LEGO MINDSTORMS
EV3 robots past those first simple steps. I assume you have gone through the basic
tutorials provided by LEGO. I provide build instructions for a base robot to which
you can add sensors and work through the advanced programming algorithms
provided in this book. Students and coaches working with FIRST LEGO League
teams and World Robot Olympiad teams will benefit from using the techniques
described in this book to develop their ability to navigate a playing field
using sensors.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information.

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Do not
press the Finish button yet."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

http://www.amazon.com/
http://bricklink.com/

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/5029OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/5029OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/5029OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[6]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Engineering Notebook
As described by LEGO, the EV3 MINDSTORMS software Content Editor is a digital
workbook into which you can enter text, images, sound, and videos. There are a lot
of great features that are described in brief by LEGO in the EV3 software help menus.
In this chapter, we will look at the following topics:

•	 The engineering design process
•	 Advanced features of the Content Editor
•	 How to add images into the Content Editor
•	 How to add pages and page actions
•	 Computer Aided Design and adding building instructions
•	 How to add comments into your programs

The engineering design process
Without using those words, with the Content Editor, LEGO has created a digital
engineering notebook. An engineering notebook is more than just a record of your
work. An engineering notebook allows you to record (and communicate) your initial
designs, construct the model, and iterate your building and programming. In the
engineering design process, it is important to record your mistakes so that you
have a record of what didn't work. You should always put dates on the work
you have done.

Engineering Notebook

[8]

According to the U.S. Next Generation Science Standards, we can present a
simplified version of the engineering process in the following diagram:

The process of iteration and optimization is critical to building good models.
Particularly when it comes to programming, you will find you need to make
numerous revisions to your program so that your robot has the desired performance.
The preceding image is an abbreviated version of what is often presented as the
engineering design process. There is no single engineering design process. There are
many variations on the preceding theme, starting with a problem and ending with a
solution. The common steps include the following:

1.	 Defining the problem.
2.	 Researching the problem and the constraints.
3.	 Brainstorming to develop several possible solutions.
4.	 Selecting one solution.
5.	 Drawing and building prototypes.
6.	 Testing and evaluating.
7.	 Redesigning and optimizing.

The iterative nature of the engineering design process is important. Often, if will not
follow a straightforward path between these steps. With this number of steps, you
need to document your work and record successes and distresses. Additionally, the
evolution of thought and the solutions for one challenge might easily be translated
to another. The Content Editor built into the EV3 software easily fulfills the task of a
multimedia-based engineering notebook.

Chapter 1

[9]

Content Editor features
When you start a new project in the EV3 software, the Content Editor will
automatically open up on the upper right-hand side of the Programming Canvas.

The Content Editor will automatically open up in View mode, as shown in the
preceding screenshot. If you click on the Pencil icon (encircled in the preceding
screenshot), you can switch from View mode to Edit mode; this allows you to
enter information.

Engineering Notebook

[10]

When entering Edit mode, the EV3 software limits the icons displayed to five basic
functions such as Text and Image. You can access the full range of the Content Editor
functions by clicking on the red cross sign in the upper right-hand corner:

The basic features of the Content Editor, shown in the preceding screenshot,
include (going clockwise from the top) Text, Image, Building Instructions, Video,
Table, Webcam, Document, and Sound. If you want to return to the abbreviated
version of this menu, you can click on the Document icon. By themselves, many
of these entries might seem limited. However, using the selections in Page Setup,
you can combine these features into a powerful record of your work.

When you create a new page in the Content Editor (by clicking on the plus sign),
it will open up the templates shown in the following screenshot:

Chapter 1

[11]

I particularly like to have text on the bottom panel to describe to the reader what
they are looking at in any videos and images, or building instructions on the top
panel. If you click on the icon I have circled in red in the previous screenshot, you
will see two panels appear as shown in the following screenshot:

Next, let's insert an image into the top window in the Content Editor. Click on the
Image icon. When working with the image, you will find that you can only upload
JPG and PNG images. Then try typing some text into the bottom window after
clicking on the Text icon, as shown in the following screenshot:

Engineering Notebook

[12]

You will see that the Text Toolbar allows you to set the fonts and the formatting.
When working with text, I like to add text actions. If you click on Add Action,
encircled in the following screenshot, several options are presented:

A drop-down menu will appear with these options as shown in the following
screenshot. The actions are similar to a hyperlink. They allow you to open programs
or a website with the page or move to a different page. This is particularly useful if
you have numerous pages in the Content Editor for your program. For example, you
could create a table of contents at the beginning.

After you have created several pages, you should try to use the function Go To
Named Page. A good use for naming your pages is to create dates so that you
know when you did your work. You might choose to name your pages with the
date you created it on. I also like the Go To Program option. At this point, the EV3
software Version 1.1 doesn't allow you to choose programs that are part of a different
project. You can also use a Text Button to emphasize the text action, as shown in the
following screenshot:

Chapter 1

[13]

New pages and page actions
Embedded into the EV3 software are model instructions for several different robots.
These instructions are presented in the Content Editor and follow a certain format
spread out over three pages.

•	 A video of the completed model
•	 Step-by-step building instructions
•	 The computer program

However, the program does not appear until you reach the third page. The
mechanism to allow this is called Page Action. By moving to the next page, you can
trigger actions such as opening a program or project. This is useful if you don't want
your reader to be distracted by what is coming next, or you want it to be a surprise.
In order to trigger the release of a program, follow the steps shown in the following
screenshots. First open the Page Action menu.

Engineering Notebook

[14]

If you select Go To Program, then you will be asked to choose a program, as shown
in the following screenshot, so that, when the page is opened, the program will open
simultaneously. This can also be useful if you are using different programs for the
same model. For instance, you could include a video and/or text description of the
execution of that program in a page of the Content Editor, but not open the program
until the page is selected.

Computer-aided Design and building
instructions
Using Computer-aided Design (CAD) software can be useful on several fronts. Once
you learn how to use this kind of software, you will find it can be quicker to build
models digitally than with real bricks. Real engineers always design their robots
virtually before building the actual product. This is because the process of trial and
error involved with trying to fit parts together can be time consuming and expensive.
If you have a large inventory of (unorganized) LEGO bricks beyond those included
in your EV3 kit, you might build something digitally before you go searching for the
bricks. At this point, it is worth mentioning the two most common CAD programs:
LEGO Digital Designer and LDraw.

Chapter 1

[15]

LEGO Digital Designer
LEGO produces LEGO Digital Design (LDD) and it is a free download. LDD was
designed for children, you can use it to build instructions. LDD exports its build
instructions as HTML files or .png files. An image of LDD is shown in the following
screenshot. Bricks snap together with LDD, but precision is necessary. Additionally,
you may have trouble aligning gears with LDD. You will need to rotate them to
make them fit. If the pieces do not align in the software, it will not let you put the
piece into place. You can download LDD from http://ldd.lego.com/.

http://ldd.lego.com/

Engineering Notebook

[16]

LDraw
LDraw (LEGO Draw) is a file format specification used by a large number of advanced
LEGO CAD programs. The LDraw standard is free and open source. In the following
screenshot, you can see the software I used to write this book, MLCad. You can
precisely define the exact location and rotation of every LEGO brick. Bricks do not
automatically snap together as in LDD, but with gears you might need this flexibility.
LDraw-based CAD programs also have a larger parts library compared to LDD.

You can also define the viewpoint of your model when creating building
instructions. The capabilities of LDraw programs are far more advanced (than LDD).
LEGO Publisher (LPub) is another piece of free and open source software that
generates building instructions with step numbers. Mike's LEGO Computer-aided
Design (MLCAD) in combination with LPub produced the images shown in the
following screenshot. As you can see, the Bill of Materials for the model is imported
into EV3 software from LPub.

Chapter 1

[17]

In the next screenshot, you can see one of the building steps imported into the EV3
software. At the bottom of the screenshot, you can see several of the building steps.
If you click on a building step, it will highlight that step. The difference between an
Image Page and a Building Instruction Page in the Content Editor is that the Building
Instruction Page lets you have multiple images on one page.

Engineering Notebook

[18]

After you have inserted the build instructions into the EV3 software, you can look
at them in View mode. You will find the instructions large enough to be usable.
This is very useful as a record for yourself and to communicate to others what
you have done!

You can download LDraw type software from www.ldraw.org.

Commenting on your code
Although not part of the Content Editor, annotating the actual programming code
is incredibly important. Not only does this serve as a record of your own work, but
also others who read your programs will understand what you are thinking. And,
as you work through iterations of your programming, commenting allows you
to mark any changes you make to the program. Traditional computer languages
have comment lines to explain the code. As a visual programming language, the
EV3 MINDSTORMS software allows you to add comment boxes near the relevant
algorithms. If you click on the Comment icon I have circled in red in the following
screenshot, a small comment box will appear. You will need to increase the size of
the comment box in order to type words into it. You can then move the comment box
around the programming window to the appropriate place in your code.

www.ldraw.org

Chapter 1

[19]

Summary
In this chapter, you have learned about some of the advanced features of the Content
Editor, about the engineering process, to upload images and building instructions,
and to annotate your work.

In the next chapter, we will build gear trains using several types of gears. You will
learn how to increase the speed or power of your motors using a set of gears.

Mechanical Design
In this chapter, we will build and program several models to demonstrate the basic
principles of mechanical design. We will:

•	 Explore the idea of mechanical advantage
•	 Learn how you can increase either speed or torque using different

combinations of gears
•	 Build gearboxes with motors
•	 Use the spur gears, beveled gears, and worm gears
•	 Write a program to spin the motors a set number of rotations
•	 Use the display on the EV3 brick

All of the models in this chapter can be built with both the EV3 Home Edition and
EV3 Educational Edition kits.

Mechanical advantage
When designing a robot, sometimes we may want to build a fast robot that needs
to get to its objective quickly. At other times, we may want a powerful robot. For
instance, maybe the robot needs to push a heavy object, push another robot, or climb
a steep hill. When it comes to a robotic arm, we might be trying to lift a heavy object
slowly or lift a small object quickly.

Mechanical Design

[22]

However, we cannot have both speed and power. There is a trade-off here—if you
increase one, you decrease the other. This trade-off is called the law of conservation
of energy.

LEGO bricks allow us to use several types of simple machines. The simplest would
be the lever arm. You can easily create a lever with LEGO beams and pins. To
balance a seesaw or a lever, the amount of torque or rotational force must be the
same on either side of the seesaw. In the preceding image, we see a LEGO balance
with unequal forces but equal lever arms. The longer the lever arm, the less force we
need to rotate the lever. In the following image, we have doubled the length of the
lever arm on the left but the mass is only half the size.

Chapter 2

[23]

We define the mechanical advantage using Archimedes' Law of the Lever. The
mechanical advantage is the length of the longer lever divided by the length of the
shorter lever. The lever in the preceding image has a mechanical advantage of 2
because we have doubled the length.

A longer lever arm will increase our mechanical advantage. If the mechanical
advantage is greater than 1, the output of our machine will have an increase in
force over the input.

Mechanical Design

[24]

The Home Edition of the EV3 kit comes with rubber bands, which can be used in a
pulley system. In the LEGO MINDSTORMS kits, the most common way to increase
your mechanical advantage is by using gears. We can assemble two or more gears
together in what is called a gear train. The teeth of gears will mesh together.
We can define the mechanical advantage in a gear train by the number of teeth,
N, on each gear.

If the number of teeth on the output gear is greater than the number of teeth on the
input gear, the mechanical advantage is greater than one. This will result in more
torque or rotational force on the output of our gear train. However, the rotational
speed, ω, decreases in the same ratio as torque increases.

Motors
The EV3 kit comes with two large motors and one medium motor. Beyond the
packaging, there are some other important differences between the large motor
and the medium motor. The following list compares the features of the large and
medium motor:

•	 Large motor maximum speed 170 rpm
•	 Medium motor maximum speed 250 rpm
•	 Large motor torque when rotating 0.21 N∙m (Newton-meters is a unit used to

measure torque)
•	 Medium motor torque when rotating 0.08 N∙m
•	 Large motor torque at standstill 0.42 N∙m
•	 Medium motor torque at standstill 0.12 N∙m
•	 Large motor mass is 76 grams
•	 Medium motor mass is 36 grams

Chapter 2

[25]

The large motor will be excellent to power the drive train of our robot, and if you
need the extra speed, you can always gear the motors up. If you need more torque,
you can gear down. The medium motor is about half the mass of the large motor.
The medium motor actually spins about 50 percent faster than the large motor.
The torque of the medium motor is only a fraction of the large motor. This makes
the medium motor ideal for lighter loads.

Large motors and gears
We will be building a simple gear train with two gears powered by the large motor.
The gears we are using are double bevel gears. Normally, when you think of a gear,
you are thinking of a straight or a spur gear. The LEGO double bevel gear is essentially
a spur gear in the middle, with beveled edges on both sides. Not only does this allow
you to combine two double bevel gears aligned parallel to each other as we are in
this section, but you can also combine them at right angles, as we will see later in this
chapter. I chose this particular set of gears because they are included in both the Home
Edition and Educational Edition kits. However, you could build a gear train like this
using any set of dissimilar gears. The small gear has 12 teeth, and the large gear has 36
teeth. The motor will power the larger gear. We will find that every time the large gear
spins once, the small gear will spin three times. So we are gaining speed, but at the cost
of losing torque. This gives us a mechanical advantage of one third. So at full power,
our small gear could rotate at a speed of about 500 rpm.

You will need the following parts to build this model. The only piece that is different
between the two EV3 kits is the 11-mod beam; it's white in the Educational Edition
and red (shown in the following screenshot) in the Home Edition.

Mechanical Design

[26]

In the following four steps, we will build a simple gear train:

1.	 First, insert an 8-mod stopped axle through the larger motor and two
friction pins.

2.	 Next attach a 3-mod stopped axle and the 11-mod beam.

Chapter 2

[27]

3.	 Now, we will attach the large and small double-bevel gears to the axles.

4.	 In the next step we will add two flag bricks.

Mechanical Design

[28]

The flag will allow us to visualize easily how many times each motor has rotated.
When you run the program, you will see that the gear with the small flag will rotate
three times as fast as the large gear. You can of course also add more gears to the
beam. You should note that the gears in this model turn in opposite directions. Every
time you add a gear, it will turn in the opposite direction of the gear it is next to. So if
you were to add a third gear, it will turn in the same direction as the original gear.

Writing a program
After we attach the cables, we will be ready to write a program to make the motor
spin. Connect the motor to port D on your EV3 brick. Turn on your EV3 brick by
pressing the dark gray button in the center of the brick.

After you start up the EV3 software, navigate to File | New Project | Program.
This will start up a new program. You could easily start one of the many LEGO
tutorials at this point. We will start with a blank sheet. The startup menu you see in
the following screenshot is the main difference between the Home Edition version of
the software and the Educational Edition. Additionally, the Home Edition does not
allow you to do experiments.

Chapter 2

[29]

You will see several icons at the bottom of the screen on the green Action tab of the
Programming Palette. Drag a Large Motor block (encircled in red in the following
screenshot) onto the Programming Canvas and place it next to the Start block.

Although not required, you can add a Stop block at the end of the program. You
can find the Stop block on the dark blue Advanced tab of the Programming Palette,
as added in the following screenshot:

We will now set up the Large Motor block:

•	 Using the drop-down menu, set the Large Motor block to On for Rotations
•	 Set the number of rotations of the wheels to 2
•	 The power level is set to 50 percent
•	 The motor is set to port D

Mechanical Design

[30]

The motors have built-in shaft encoders that can tell how far the motors have rotated.

Your EV3 brick should be powered on. Make sure your robot is connected to your
computer via the USB cable. Next, click on the Download and Run button. Your large
gear will make two complete rotations, and the small gear will make six complete
rotations. You can also run it by clicking on the Start block.

Bevel gears at right angles
In the next example, we are going to build a gearbox using a 12-tooth bevel gear
along with the large 36 tooth straight gear with double bevels. These gears actually
rotate at right angles to each other. Since the motor drives the smaller gear, the
output of our gearbox is actually slower than the motor. However, we will gain
torque in this system, so we have a mechanical advantage of 3. We will be using the
medium motor in this model.

Chapter 2

[31]

In the following five steps, we will build a gearbox with two gears at right angles:

1.	 First attach two friction pins to the medium motor.

2.	 Next, attach the open frame to the motor. The open frame is essentially
our gearbox.

Mechanical Design

[32]

3.	 Next, place the 8-mod axle (with stop) and the beveled gear into the medium
motor. Make sure the axle fits into the motor.

4.	 Now, insert the large gear and an axle into your gearbox. The teeth of both
the gears should interlock.

Chapter 2

[33]

5.	 Finally, add a flag so you can see the rotations of the large gear.

Next, write this simple program. The main differences from before are that now
we are using the Medium Motor block instead of the Large Motor block and
connecting it to port A rather than port D. On the Programming Palette, you
will find the Medium Motor block just to the left of the Large Motor block. If we
set the motor to rotate for four rotations, we will find that the large gear rotates
slightly more than once. Although the flag is rotating slower, we have gained
strength or increased our torque.

Mechanical Design

[34]

Worm gear
For our next model, we will build a gearbox that contains a worm gear. Every time
the worm gear makes one complete rotation, the spur or straight gear meshed to it
will progress by one tooth. We are using a 24-tooth spur gear in this model. Notice
how this spur gear does not have any bevels. You will find that our spur gear will
rotate very slowly, but we have a mechanical advantage of 24! Speed is not always
the goal of a gearbox. Besides greater torque, one feature I like about using a worm
gear is the greater amount of control. If you are building an arm where great
precision is required, the worm gear will allow you to align your output appendage
with a high degree of accuracy. The EV3 shaft encoders can guide the motors
themselves to within one degree of accuracy. So with this combination of gears,
we have an accuracy of 1/24 of a degree.

Chapter 2

[35]

In the following seven steps, we will build the gearbox with a worm gear:

1.	 First insert two long friction pins into your medium motor. The short side of
the pins should go into the motor.

2.	 Next, add an open frame with two friction pins in the frame.

Mechanical Design

[36]

3.	 Now, add two 3-mod beams to the inside of the open frame. These beams
will reinforce the axle and prevent the worm gear from sliding back
and forth.

4.	 Now, add in an 8-mod stopped axle, the worm gear, and two half bushings.
The axle should go all the way into the motor.

Chapter 2

[37]

5.	 Now we will add some 3-mod perpendicular pin connectors to the open
frame. This is creating support for the other half of our gearbox.

6.	 Now, add the second open frame along with the 24-tooth straight gear.

Mechanical Design

[38]

7.	 Now we will add the white flag so you can see the progress of the axle.

We can download a similar program to what you wrote for the beveled gear.
Increase the number of rotations, as this gearbox will move slowly. Again,
make sure that your motor is plugged into port A of your EV3 brick.

Chapter 2

[39]

When you executed the preceding program, you saw how slowly the straight gear
turned. It can be difficult to visualize how many times the worm gear has turned. We
are now going to write a more complicated program that will allow us to display the
number of rotations of the worm gear on the EV3 brick display.

Using wires and parallel threads
In the following screenshot, you can see that we can have parallel commands in
our program. Our primary command will be to rotate the medium motor. You can
decide how many turns to rotate your medium motor for. Although in our original
program the blocks are connected by touching each other, you can also connect the
blocks with wires as you would a real instrument. If you click on the Sequence Plug
Exit of a block, a wired space between blocks will open up. You can drag this wire to
the next command block, such as the Loop block we will add in a moment.

Mechanical Design

[40]

This also allows you to make your code two dimensional. One important aspect of
visual programming is being able to view your entire code on the screen at one time.
You can also split the wires to run parallel threads in your program. In this case, the
wires run to both the Medium Motor block and the Loop block. When the program
executes, both of these branches will run at the same time.

For your other parallel command, grab a Loop block from the Orange Flow Control
tab of the Programming Palette. A Loop block continuously repeats itself and runs
the command blocks that are inside the loop.

Chapter 2

[41]

The following steps describe how to set up the blocks inside of the loop:

•	 Inside the loop, you want to put a Motor Rotation Sensor block from the
Yellow Sensor tab of the Programming Palette.

•	 To the right of the Motor Rotation Sensor block put a Display block from the
Green Action tab of the Programming Palette.

•	 On the Display block, you need to click on the tab on the left of the block to
allow a text input from the Motor Sensor block.

•	 In the upper right-hand corner of the Display block, click on the Text
Window—which now says MINDSTORMS—and switch it to Wired.

•	 You then draw a wire from the output of the Motor Rotation Sensor block to
the text input of the Display block.

•	 Make sure that your Motor Sensor block has port A selected. The tab on the
Motor Sensor block should have the number of rotations selected.

•	 On the Display block, you may also notice that the Eraser icon is selected.
This will clear the display each time the loop is run.

When you run this program, you will see the number of rotations of the medium
motor displayed on the screen. Since the bottom thread is an infinite loop, you will
need to stop the program manually.

Mechanical Design

[42]

Summary
In this chapter, you learned how to use several types of gears included in the
LEGO EV3 kit. We observed how to combine gears to increase speed or torque
in a gearbox. We wrote simple programs with parallel threads, loops, motor
feedback, and display output.

In the next chapter, we will attach two large motors to the EV3 brick to build a
moveable robot.

Drive Train and Chassis
In this chapter, we will build a moveable robot. The robot will include a common
chassis that will work with both the Home Edition and the Educational Edition of
the EV3 kit. To keep these robots simple, I am not including gear reductions, but that
would be a natural extension using what you learned in Chapter 2, Mechanical Design.
All of these robots have a low center of mass, and a wide chassis, which makes it
easy to use them for line tracking. The chassis will consist of:

•	 A frame
•	 The EV3 brick
•	 Motors

I will provide instructions for attaching different methods of locomotion to these
chassis depending on your version of the EV3 kit. The robots include:

•	 Wheels
•	 Skids
•	 Caster ball
•	 Treads

Chassis
In this section, we will assemble the EV3 intelligent brick with several framing pieces
and motors. You will be able to build several different models using this chassis by
attaching additional LEGO beams and bricks. For the chassis, the only difference
between the Retail Edition and Educational Edition will be the colors of the bricks.

Drive Train and Chassis

[44]

If you have the Educational Edition of the EV3 kit, you will need the pieces shown in
the following screenshot to build the chassis:

If you have the Retail Edition of the EV3 kit, you will instead need the pieces shown
in the following screenshot. The only difference in the Bill of Materials for these two
versions is the color of the beams. The Educational Edition has white beams with
some red pieces. The Home Edition has black beams.

Chapter 3

[45]

We will now build the chassis. The step-by-step build instructions I have included
here are for the Educational Edition. First, take your EV3 brick and flip it over:

Next, we will insert four blue long friction pins into the EV3 brick:

Drive Train and Chassis

[46]

Now, we will attach the 15-mod beams to the brick. Remember, these beams
will be black if you are using the Retail Edition of the kit and white in the
Educational Edition.

Now, insert four more long friction pins into the beams at the locations shown in the
following screenshot:

Chapter 3

[47]

The following screenshot of the submodel is broken into three steps. This consists of
the open frames we will use to hold the motors and some attachments.

For this submodel, you will need two of the 3 x 5 open frames and a four-pin
parallel connector:

Now we will attach the submodel to the beams:

Drive Train and Chassis

[48]

The next submodel will include the left motor and several pins and beams to allow
us to attach the motor to the chassis. For the left motor assembly, you will need a
large motor, a long blue friction pin, a blue-axle pin, a black-friction pin, a 3 x 5 bent
beam, and a 2 x 4 bent beam. Note that the colors on the beams will differ for the
Retail Edition of the kit.

Now we will attach the left motor assembly to the chassis:

Chapter 3

[49]

To hold the motor assembly in place, we will use two red stop-bushing pins. I like
to use the stop-bushing pins because they are easier to remove and can prevent the
assembly from falling apart. Things are inserted into the underside of the frame.
Later we will reinforce the top of the motor assembly.

Now we will build the submodel consisting of the right motor assembly. This is
identical to the left motor assembly except that the pieces are placed on the opposite
side of the motor.

Drive Train and Chassis

[50]

Once this is done, place the right motor assembly onto the chassis:

And as mentioned earlier, hold the motor assembly in place with the red
stop bushings:

Chapter 3

[51]

Now we will attach the top of both motor assemblies using red stop bushings.
You will find that using the stop bushings will make it easier to take the chassis
off if you need to change batteries.

If you are using the Retail kit, the shape of your final chassis will be identical but
the color of some of the pieces will be different, as you can see in the following
screenshot. This is the starting point for all four of the various robot models we
will build in this chapter.

Next, we will attach wheels, skids, casters, or treads to our chassis. A robot with
treads is more stable but often has a larger turning radius. The tread-based robot will
also have a larger footprint. A robot with a skid or caster will turn better but only has
three points of contact, and thus can tip easier.

Drive Train and Chassis

[52]

Skid-bot with the Retail kit
The following robot uses two-drive wheels and a ski or skid plate in front. Although
you can easily build a four-wheel robot, I find that it can be harder to maneuver a
four-wheel robot with a high degree of precision. Depending on the balance of a four-
wheel robot, the non-driving rubber wheels will provide a large amount of friction
that will make it difficult to turn accurately and in a predictable and reproducible
manner. Using a skid in the front reduces the amount of friction. In later chapters, we
will do a lot of optical line tracking with our robot and for this I want a robot with
high maneuverability; thus, we will build a skid-bot. The following steps are meant for
the Retail Edition of the kit, but you can easily find pieces to build a skid-bot with the
Educational Edition. You will use the following parts from the Bill of Materials in the
following screenshot to assemble the skid-bot. If you have the Education Edition, you
may want to skip ahead and build the caster-bot.

Chapter 3

[53]

First, take your chassis and flip it upside down:

Next, insert four black friction pins into the open frames of the chassis as shown in
the following screenshot:

Drive Train and Chassis

[54]

Now you will add the longer open frame onto the chassis with two black-friction
pins sticking out the front. This will make the level we want for line tracking.

In the next submodel, we will assemble the skid. This consists of two of the white
skid pieces interspaced with a black mod-7 beam. The beam will actually be on the
centerline of the robot and is needed so that the robot is symmetrical and balanced.

Chapter 3

[55]

Next we will attach the skid assembly to our open-frame bricks:

Now we will insert two 6-mod axles into the large motors to mount the drive wheels:

Drive Train and Chassis

[56]

Then add four yellow half-bushings onto either side of the axles to prevent them
from slipping:

In this step, we will add the hubs for the tires. Insert the hubs onto the axles in the
orientation as shown in the following screenshot:

Chapter 3

[57]

Next, insert two yellow half bushings into the hubs to prevent them from sliding off:

Finally, place the tires onto the hubs:

Drive Train and Chassis

[58]

You will find that you could also build a skid-bot with the Educational Edition.
However, because the Educational Edition has larger tires, you would have to
account for this by adding an extra layer of beams above the skid so that the robot
is leveled. As a warning, you will find that the skid will get scuffed up if you are
driving on a rough surface. In the next three sections, I will explain how to build the
caster-bot and two tread-bots. If you have just built the skid-bot, you may want to
skip ahead to the programming section at the end of this chapter.

Caster-bot with the Educational kit
Although you can make a skid-bot with the Educational Edition of the EV3,
the caster allows you even greater maneuverability because there is less friction.
Having said that, the skid will actually respond better to bumps than the caster
if your terrain is not perfectly flat. But I am interested in a robot that can be
maneuvered with precision, so I am going to have us build a robot with the caster.
Let's start out by gathering the parts seen in the Bill of Materials that is shown in
the following screenshot:

Chapter 3

[59]

Start out by flipping over our chassis:

In our caster submodel, we will build an assembly to attach the caster to the chassis:

Drive Train and Chassis

[60]

Next, we will attach the caster assembly to the chassis:

We now need axles to attach the drive wheels to the large motors. I am using
the 8-mod stopped axles. The bushings are merely to provide extra space so that,
as far as possible, the axles do not stick out of the robot and to prevent slippage.

Chapter 3

[61]

Now add bushings to the outside of the axles:

Next, let's add the hubs for the tires. Also, add two more bushings so that the hubs
do not slide off the axles:

Drive Train and Chassis

[62]

Finally, add your tires and the caster-bot is ready to roll! After you have added the
tires, you can skip ahead to the programming section.

Tread-bot with the Retail kit
Tanks are fun to build and have the added advantage of easily climbing over
obstacles. You will notice that a lot of tank designs will have larger center wheels.
Having a larger center wheel can be particularly useful if you want to climb up
ramps or go over bumps. Without the center wheel, if you are climbing over a bump,
there is a chance of getting stuck. However, when you have a larger center wheel,
your robot will often be tilted. Your robot will not be constantly parallel to the
ground, which can be a problem with calibrating any sensors you might be using for
navigation. I encourage you to play around with larger center wheels on your tanks,
but the models I provide here have smaller center wheels. You will need the parts
shown in the following screenshot in the Bill of Materials to assemble the tread-bot:

Chapter 3

[63]

Start with your chassis:

Drive Train and Chassis

[64]

You will now make two of the following submodels, which are the tread assemblies.
You will start out by attaching pins, axles, and bushings to a 13-mod beam as shown
in the following screenshot:

Next, attach the spoked black wheel hubs to the axles. You will secure the spoked
wheel hubs onto the axles with the yellow half bushings. The gray tire hub is
centered on the treads using the red bushings. If you were to add the rubber tire onto
the tire hub, this would easily make the center of the tread slightly bigger. As it is,
the bare tire hub lends just enough support so that the treads do not collapse.

Chapter 3

[65]

To finish the tread assembly, add the tread belt to each assembly:

Now, add one tread assembly onto the right-hand side of the robot with the long axle
inserted into the larger motor. You will notice that the black friction pins in the beam
will insert into the side of the large motor:

Drive Train and Chassis

[66]

Now, add the other tread assembly onto the left-hand side of the robot with the axle
into the large motor and the friction pins again into the side holes in the motor:

Finally, to prevent the treads from sliding, add two yellow half bushings onto the
end of the axles that are sticking through the large motors.

Although both the Retail Edition and the Educational Editions of the EV3 kit come
with treads, you will find that the Retail Edition tread is a simple belt. This limits
what you can do with the tread, but it does make it easy to use. The rubber does
have more friction than a plastic tread, but only comes in one size.

Chapter 3

[67]

Tread-bot with the Educational kit
Conversely, the treads with the Educational Edition of the Kit are multiple pieces
that are linked together. Thus, you can make tank treads of different lengths. In
addition to the hubs and pins seen in the Bill of Materials, you will need almost all
of the links in your EV3 kit to make this tread-bot. For each tread assembly, you will
need 26 links for a total of 52 links.

Start by flipping your chassis upside down:

Drive Train and Chassis

[68]

You will need to make two of the following submodels. You will need to build
one tread assembly for each side of the robot. Insert axles and pins into the
13-mod beams and secure them into place using bushings, as shown in the
following screenshot:

Next, attach the chain hubs to the outer axles and the double-bevel gear to the central
axles. The gear is about the same size as the hubs, so the treads will be level.

Chapter 3

[69]

To finish each submodel, add 26-tread links onto each tread assembly:

Now, you can attach the tread assemblies onto the chassis. The long axles fit into
the large motors. The three blue pins will be inserted into the holes on the side of
the motor.

Drive Train and Chassis

[70]

Finally, secure the tread assemblies into place by sliding two yellow half bushings
onto the drive axles.

We are now ready to make our robots move.

Programming the robot to move forward
Before we program our robot, we need to attach the cables. Plug in cables from the
motors into ports B and C on the EV3 intelligent brick.

Let's write a simple program to test out our robots. Drag a Move Steering block
onto the Programming Canvas and place it next to the Start block, as shown in the
following screenshot:

Chapter 3

[71]

Using the drop-down menu, set the Move Steering block to On for Rotations. Set
the number of rotations of the wheels to 5 as shown in the following screenshot.
Remember that the motors have built-in shaft encoders that can tell how far they
have rotated. The direction can be set to zero, which is straight ahead. The power
level can be set to 50 percent. The motors are set to ports B and C. This is different
from what we saw in Chapter 2, Mechanical Design, where the Large Motor block was
only controlling one motor. The Move Steering block controls two motors at once,
which is ideal for driving.

Although not required, you can end with a Stop block at the end of the program.
Remember to make sure your robot is connected to your computer via the USB
cable. Since our robot is going to be moving now, you might want to also connect
via Bluetooth (we will explain this in detail in a later chapter). Next, click on the
Download and Run button. Your robot should now move backward! You can also
run it by clicking on the Start block.

Drive Train and Chassis

[72]

This chapter was heavy on mechanical design, so I will save the elaborate
programming for the next chapter on Sensors and Control.

Summary
In this chapter, we used a single chassis to build four different types of robots.
Using a common base will allow you to swap attachments and revise and improve
your robot without starting from scratch each time.

In the next chapter, we will explore how to use sensors to make your robot interact
with its environment.

Sensors and Control
In this chapter, we will have the robot respond to the environment using the sensors
available in your kit. You will also take a reading from the sensor to display on both
the EV3 brick and the computer screen. I will try to focus on information that is not
already readily available in the EV3 help menus.

In this chapter, I will introduce:

•	 Programming blocks for sensors
•	 Official LEGO sensors such as:

°° Touch Sensors
°° Color Sensors
°° Motor rotation sensors
°° Gyro Sensors
°° Ultrasonic motion sensors
°° Infrared Sensors

•	 Third-party sensors such as:

°° Dexter industries
°° Mindsensors
°° HiTechnic
°° Tetrix
°° Matrix
°° Vernier

Sensors and Control

[74]

Using sensors
What is great about the official LEGO EV3 (and some NXT) sensors is that the
software on the EV3 brick will Auto-ID the sensors as soon as they are plugged
in. This makes it easy to use the sensors because you do not need to tell the brick
what you plugged in. If you are using older LEGO sensors or sensors from other
manufacturers, you will have to download and import sensor blocks that will control
those sensors. The sensor blocks have the code to control the sensor and convert the
signals from the sensor into readable values. You can download these .ev3b files
from the manufacturer's website. These third-party companies include HiTechnic,
Dexter, and Vernier to name a few. The Retail Home Edition and the Educational
Edition of the EV3 kit come with different sensors. The Educational Edition of the
software is ready to use all of the EV3 sensors. The Retail Home Edition of the
software is not ready to use the gyro or the Ultrasonic motion sensor. To use the gyro
or the Ultrasonic motion sensor, you will have to download the sensors blocks from
LEGO. Later in this chapter, we will download and import these sensor blocks. But
first we are going to learn how to use the sensors in your kit. We can use sensors to
collect data or we can use them to allow the robot to react to the environment. In the
Educational Edition of the software, we can collect large data sets from the sensors
using the Data Logging features that we will explore in Chapter 9, Experiment Software
and Data Logging.

Programming blocks
One thing that is confusing about the term "Sensor Block" is that it is used for both
the downloadable .ev3b block file, and the icons you can find on the yellow tab of
your Programming Palette, as shown in the following screenshot. An .ev3b block
file can contain any kind of programming block, not just blocks for sensors.

Chapter 4

[75]

The preceding screenshot contains all the sensor blocks you can find in the
Educational Edition of the software. The Home Edition does not include the Gyro
and Ultrasonic Sensor blocks. The Home Edition does not have the legacy NXT
sensor blocks such as the sound sensor, the temperature sensor, or the energy meter.
We will show how to import these sensor blocks later in the chapter. You can drag
any of the sensor blocks from the Sensor tab of the Programming Palette onto your
Programming Canvas.

I will start by describing the simplest sensor block, which is the Touch Sensor block.
Most sensors have a tab, called the Mode Selector that controls the output of the
sensor block. In the following screenshot, I have clicked on the Control tab for the
Touch Sensor block and asked it to measure the state of the Touch Sensor.

You can also drag a wire from the output socket of the sensor block to deliver data to
another programming block. In the following screenshot, I am dragging a wire from
the output socket of the Touch Sensor block to plug into a Display block:

Sensors and Control

[76]

You can also use sensors to control the various flow control blocks that can be found
on the orange tab of the Programming Palette. In the following screenshot, I have
shown several flow control blocks that are all controlled by the Touch Sensor. The
Flow Control blocks shown in the screenshot include a Wait block, a Loop, and a
Case Structure.

LEGO EV3 sensors
We are now going to try using all of the sensors. I will focus mostly on the Touch,
Color, and rotation sensors, as those are common to both editions of the EV3 set.

Touch Sensors
Like most of the EV3 sensors, the Touch Sensor can be attached to your robot using
either pins or axles as shown in the following screenshot. The Touch Sensor is a
logic sensor with only two positions: on or off. Thus, the output of a Touch Sensor is
either a 0 (for released) or 1 (for pressed). Although it is straightforward to press the
red button to activate the Touch Sensor, you can mechanically extend its range by
inserting an axle into the red button on the Touch Sensor, as shown in the screenshot.
If you didn't want to attach the Touch Sensor to the robot directly, with a long cable
the Touch Sensor could be used as a sort of tether control for your robot.

Chapter 4

[77]

When you plug in the Touch Sensor into the EV3 brick, and the EV3 brick is in
communication with the computer, the Touch Sensor will automatically show up in
the Port View as shown in the following screenshot. The Port View is at the bottom
of your screen to the right of the Programming Palette. In this case, the Touch Sensor
is in port 1 of the Port View. Since the Touch Sensor is not pushed in, the number 0 is
displayed right above the icon for the Touch Sensor.

When the Touch Sensor is pushed in, you will read number 1 above the icon for the
Touch Sensor, as shown in the following screenshot:

Sensors and Control

[78]

We will now write a simple code to display the output of the Touch Sensor onto the
EV3 brick. We start out by dragging a Loop from the Orange Flow Control Palette.
Inside the Loop, place a yellow Touch Sensor block and a Green Display block.

The default setting for the Display block is to read a file that will be discussed in
Chapter 6, Output from EV3. By clicking on the Mode Selector for the Display block,
we can switch from a file and navigate to Display | Text | Pixels. This allows us to
display text.

If you click on the Block Text Field (where it says MINDSTORMS in the preceding
screenshot), you can choose a Wired input as shown in the following screenshot:

Chapter 4

[79]

Next, drag a data wire from the output of the Touch Sensor block to the Text Input
of the Display block. The Loop will allow the logic condition of the Touch Sensor to
be continuously displayed on the EV3 brick screen. The output plug of the Touch
Sensor block is triangular and the wire is green, which indicates that logic (0 or 1)
information is being sent along the wire. Download and try out this program. You
will see how the state of the Touch Sensor is updated on the screen of the EV3 brick.
You should see a 0 or a 1 on the screen:

Now, let's use the Touch Sensor to control our robot. You can use any of the robots
you have built so far with the Touch Sensor. In the program shown in the following
screenshot, the first block is a Move Steering block with the Mode Selector set to On.
This means that the robot will move until it receives another command. Then we
drag a Wait block from the Flow Control Palette. By clicking on the Mode Selector
tab on the Wait block, navigate to Touch Sensor | Change | State. This robot will
move until the Touch Sensor has been pushed (or released, if the program starts with
the Touch Sensor pushed in). Although in many cases you can ignore the End block
at the end of a program, since we want the robot to stop we need to include an End
block or a Motor block that tells the motors to stop. Download and run this program
to control your robot with the Touch Sensor.

We will now look at some of the other sensors in your EV3 kit.

Sensors and Control

[80]

Color Sensors
The Color Sensor in your kit has three modes: color sensing, measuring the intensity
of ambient light, and measuring the intensity of reflected light. The Color Sensor
detects light with a photodiode.

If you want to use your robot to navigate and track lines on the floor, you will be
using the reflection mode. In the reflection mode, light is emitted by a red LED.
The photodiode in the Color Sensor measures the intensity of that reflected light.
The intensity of the reflected light is particularly sensitive to the distance above the
reflecting surface. The ideal height is about 5 millimeters above the surface. Light
is emitted from the Color Sensor in a cone-shaped beam. Ideally, the intensity of
the reflected light should be as bright as possible. If the sensor is too far away from
the surface, the intensity of the reflected light will be less. The red LED in the Color
Sensor will generate a circle of red light on the surface. The centers of the red LED
and the photodiode are about 5 to 6 millimeters apart. In order for the detector to
see the reflected light, the radius of your circle of light on the surface must be at least
5 mm. If the radius of the circle is more than 6 mm, then the Color Sensor is too far
from the surface. If the radius is less than 5 mm, then the photodiode will not pick up
the reflected light.

In the following screenshot, we show an easy-to-build attachment to hold your Color
Sensor onto the front (or back) of the robot we started building in Chapter 3, Drive
Train and Chassis. Depending on which model of the robot you build, you may need
to add in some pieces so that the height of the sensor above the floor is about 5 mm.
In Chapter 7, Advanced Programming, I will provide exact building instructions for a
line tracker attachment for each of our four robot models.

Chapter 4

[81]

In the following screenshot, we can see the Port View for using our EV3 to measure
color. Each color that the EV3 sensor measures is represented by a different number.
We have the Color Sensor attached to port 4. The Color Sensor is returning a value
of 5, which represents the color red.

Sensors and Control

[82]

In the Port View, there are three choices of feedback you can receive from the Color
Sensor: Color value, Reflected Light Intensity, and Ambient Light Intensity. When
you first plug in a color sensor, the Port View will default to the Reflected Light
Intensity. If you want to display the color that your sensor is measuring, you need
to use the Color Sensing Mode. The EV3 will detect seven different colors, which
is one more than the older NXT Color Sensor. However, you will find that certain
third-party vendors have Color Sensors with an even wider range of detection. The
number that you see in the Port View represents the color detected by the sensor.
The following table lists the numeric color codes:

Color code Color
0 No Color
1 Black
2 Blue
3 Green
4 Yellow
5 Red
6 White
7 Brown

You can use the following loop to display the color detected by the sensor onto your
EV3 brick. In this case, the output plug of the Color Sensor block is a semicircle and a
yellow wire passes a numerical data value to the Display block.

Chapter 4

[83]

If you are just interested in finding out the overall intensity of light coming into the
sensor, you can set the Color Sensor block to measure Ambient Light Intensity on a
scale of 0 to 100. You will notice that, in the preceding screenshot, the Mode Selector
of the Color Sensor block has three circles to indicate the Color Sensing mode,
whereas the following screenshot has the radiating light symbol:

As mentioned earlier, if you want to use your color sensor for navigation, you want
to detect the reflected intensity of the red LED. In the following screenshot, we have
the reflected intensity displayed in the Port View:

Sensors and Control

[84]

You can use the following program to display the reflected light intensity on your
EV3 brick. Generally, white or bright surfaces will give a high sensor reading, and
darker or black surfaces will give a low sensor reading.

However, what you will find is that the intensity of the reflected light not only
depends on the surface but is also highly dependent on environmental conditions.
Your sensor will give different readings due to the ambient light in the room. This
can create the need to calibrate your sensor and perhaps have cutoff bright and dark
values. You could manually type in the maximum reflected values, but it is probably
more worthwhile to test the ambient conditions. In this program, we use the
brightest value detected by the sensor and send this to the calibration block:

The following program will allow your robot to move forward and stop when it sees
a dark region. The Color Sensor block triggers at a Reflected Light Intensity reading
of less than 40. However, you should read the reflected intensity of the darker region
in your Port View to determine at what level to set the cutoff in your code.

Chapter 4

[85]

Motor Rotation sensors
Although not an explicit sensor, the motors have built in shaft encoders that tell you
how far the motor has rotated in seconds, rotations, or in degrees. There is also a
mode for the Motor Rotations sensor block that can found by navigating to Measure
| Current Power. Some third-party motor sensors will allow you to measure the
actual current. This can be useful if you are trying to determine at what point your
motors are overpowered and will stall out. However, the EV3 motors are generous in
this definition and are really just telling you the percentage (on a scale of 0 to 100) of
the motor output.

The Degrees mode of your Motor Rotation sensor block is really useful for turning
an arm or appendage on your robot. You can measure either relative changes in the
position of a motor or the absolute position. However, if you are using the absolute
position, it is a good idea to reset or initialize the Motor Rotation sensor. In the
following screenshot, the Motor Rotation sensor is reset before taking a value:

Sensors and Control

[86]

After you reset the Motor Rotation sensor, you can view the number of rotations in
the Port View. You can physically push the robot or turn the wheels with your hand
and see the following changes:

You may not want to constantly reset the Motor sensor. So this could be done at the
beginning of your program, and the Motor Rotation sensor block can then go inside
your Loop block. The following program will display the Motor Rotation sensor
reading on the EV3 brick display:

It is not always possible to navigate using lines on the floor (Light Sensors) or
obstacles (Ultrasonic Motion and Infrared Sensors). Thus, the Motor Rotation sensors
can be used to move forward by a certain amount. As you can see in the following
code, there are several ways you could actually have the robot move forward a
discrete amount. The Motor blocks have a mode controlled by the Motor Rotation
sensors, from a programming standpoint, this is the most efficient way to move
forward. Alternatively, you could have the Motor block set to On mode and wait
for a signal from the Motor Rotation sensor block.

Chapter 4

[87]

The process of changing direction using just the Motor Rotation sensors is called
dead reckoning. However, keep in mind that turning a motor 30 degrees does not
mean the robot turns 30 degrees. Only the motor shaft itself is turning 30 degrees.
If you are not geared up or down, then the tire turns that same amount. To directly
measure a change in angle of the robot, you would need to use a Gyro or a compass
sensor. Although the Educational Edition of the EV3 kit does contain a Gyro Sensor, I
know many FIRST LEGO League coaches who still insist on using dead reckoning or
the position of the Motor Rotation sensors to navigate. You should remember to reset
the rotation sensor if you are going to use dead reckoning. In the following program,
the robot will move forward, turn a certain amount, move forward, and turn again:

Navigating to a given destination can take a certain amount of trial and error.
Alternatively, you can push your robot along your desired path while examining
the output of the Motor Rotation sensors on the Port View.

Sensors and Control

[88]

Gyro Sensors
The development of new sensors by LEGO has been driven by strong demand and
competition from numerous third-party sensor companies. The Gyro Sensor detects
rotational motion on a single axis. You can use it to measure the angle (similar to
a compass) or the angular speed. Using the Gyro Sensor will allow you to quickly
make accurate turns. The Educational Edition of the EV3 kit contains a Gyro Sensor.
There is a vigorous debate in the robotics community as to the quality of this sensor
compared to some of the third-party vendors. Over time, I suspect the firmware
to control the sensor will undergo substantial improvement. The Gyro Sensor will
drift over time, so it is a good idea to reset the Gyro Sensor when using it in your
programs. If the Gyro Sensor has any motion while it is being plugged in, the drift
will be exacerbated. If the Gyro Sensor is drifting, the crude way to calibrate the
Gyro Sensor is to unplug it manually and plug it back in while it is perfectly still.
You can also calibrate the Gyro Sensor by using the mode selector in the Port View.
Switching the Gyro Sensor from angle mode to rate mode and back to angle mode
will calibrate the sensor. This can also be accomplished with programming, which
we will demonstrate later.

If you bought the Home Edition of the EV3 MINDSTORMS kit, you can purchase a
Gyro Sensor for about $30. If you have the Home Edition of the software and want
to use a LEGO Gyro Sensor, you will need to download a sensor block or an .ev3b
file. You can download the sensor blocks from the same LEGO web page where you
initially downloaded the Home Edition of the EV3 software. You can download the
Gyro Sensor block as shown in the following screenshot from http://www.lego.
com/mindstorms/downloads/. If you have the Educational Edition of the software,
you already have the Gyro Sensor block.

http://www.lego.com/mindstorms/downloads/
http://www.lego.com/mindstorms/downloads/

Chapter 4

[89]

After you have downloaded the Gyro Sensor block, you will need to import the
sensor block into your EV3 software, which you can do by navigating to Tools |
Block Import from the main menu. The following screenshot shows how to import
a sensor block:

After you import the sensor block, you will need to restart the EV3 software. You
will now find the Gyro Sensor block in the yellow sensor Programming Palette and
the orange Flow Control Programming Palette. We are going to write a program
to reset the Gyro and take sensor readings. For this program, I have a cable from
the Gyro Sensor plugged into port 2 on the EV3 brick. Remember to keep the Gyro
Sensor perfectly still when plugging it in. There is a mode on the Gyro Sensor block
to reset the sensor to zero; this is the first block in this program:

Sensors and Control

[90]

If the Gyro readings on your Port View are drifting, the Gyro Sensor needs to be
calibrated by unplugging it or changing the mode in the Port View as mentioned
earlier. You could also write a simple program to calibrate the Gyro Sensor.

In the preceding program, we begin by changing the mode of the Gyro Sensor using
the Gyro Sensor block. Next, a Wait block allows the Gyro Sensor the time to change
modes. Finally, we change the Gyro Sensor back to angle mode using another Gyro
Sensor block.

As I stated earlier, one of the main uses of a Gyro Sensor is to navigate. In the
following short program, the robot is programmed to turn exactly 360 degrees
or one full rotation.

You will notice that, using this simple program, the robot does not make a perfect
rotation. This is because you are asking the robot to stop exactly at the 360 degree
signal, by which time it is too late because of the inertia of the robot. To account
for this, we will have to use a more sophisticated algorithm such as a proportional
control, which we will develop in later chapters.

Ultrasonic motion sensors
Ultrasonic motion sensors emit high-frequency sound waves (above the range of
human hearing). The sensor measures the time delay between when the sound
waves are emitted and when the waves reflected from an object are detected. If you
have the Home Edition of the EV3 kit, you can buy the Ultrasonic motion sensor for
about $30.

Chapter 4

[91]

Similar to the Gyro Sensor, if you have the Home Edition of the software you will
need to download and import the sensor block. There is a minimum distance that the
sensor can detect from. If you are too close to the sensor, the reflections get blurry.
According to my testing, the published specification that the range of the Ultrasonic
Motion sensor is from 3 cm out to 250 cm is accurate. In the following program, we
will display the reading of the motion sensor on the EV3 brick:

If you attach your Ultrasonic motion sensor to the front of your robot, you can use it
to stop a certain distance from the wall. Although seemingly straightforward, in the
following program I have included two parallel threads. The EV3 will display the
motion sensor readings onto the display while moving. You will find that stopping at a
discreet distance from a wall is difficult and that a proportional control is necessary to
do this with precision. In this program, you do need the Stop block to halt the motors.

Sensors and Control

[92]

A new interesting feature of the Ultrasonic motion sensor is called presence. The
intended use of this mode is to detect the presence of other ultrasonic sensors. This
is important because if you have multiple ultrasonic sensors active at the same time,
they interfere with each other. The older LEGO NXT Mindstorm kits had a sound
sensor and presence can allow the robot to use the EV3 Ultrasonic motion sensor
as a sound sensor. Presence is useful for detecting loud noises such as a clap. In the
following program, the robot will move forward until it hears someone clap their
hands. The Loop is broken by a change in sound intensity.

Infrared Sensors
Instead of the Gyro Sensor and the Ultrasonic motion sensor, the Home Edition of
the EV3 kit contains the Infrared Sensor and the Infrared beacon. These will allow
you to make both distance and directional heading measurements. The Infrared
Sensor itself emits a cone of infrared light that can be used for distance or proximity
measurements. The term "proximity" is used because the values returned by the
sensor are not exact distances but give a relative distance based on the intensity of
the reflected light. The proximity values range from 0 to 100 percent. For a bright
object, a value of 100 percent is a distance of about 70 cm. In the following program,
your robot will display the proximity measured on the EV3 brick screen while
moving forward. The robot will stop when it gets to a proximity value of 20 percent.
Remember to attach the sensor in the direction your robot is moving.

Chapter 4

[93]

By itself, the Infrared Sensor cannot give directional information in the same way
that the Gyro Sensor can. However, the Home Edition also includes a separate
Infrared emitter, the IR beacon. The beacon has multiple channels, so you can use
several beacons to triangulate your position as we will detail in Chapter 8, Advanced
Programming and Control. For now, we will look at a sample code with a Wait block for
a Beacon Heading block to allow the robot to turn to a heading based on the position
of the Beacon. The range of values for the heading indication is from -25 to +25. These
numbers do not directly correspond to degrees, but refer to different sectors relative
to the front of the IR sensor. The following program will allow the robot to stop if it is
approaching the desired heading from the left when it reaches a heading indicator of
5. Note that this will not work if the robot is approaching the desired heading from the
right. We will need to develop a more complicated code using Math blocks to be able
to stop from either direction; we will do this in a later chapter.

Sensors and Control

[94]

If you push buttons on the IR beacon, it can actually be used to communicate with
the EV3 brick (similar to the remote control of your television set); we will discuss
this in Chapter 5, Interacting with EV3.

Third-party sensors
As you go on to expand your EV3 inventory, look around at the multiple vendors
that sell sensors for the EV3. Many of these vendors have been selling NXT sensors
for years and are developing EV3 sensor blocks that you can download from
their websites.

Remember, after you have downloaded the sensor block, you can import it by
navigating to Tools | Block Import. Then select the sensor block you wish to import.
In the following screenshot, I am importing the .ev3b file for Dexter Industries'
sensors. This .ev3b file actually contains the sensor blocks for all of Dexter
Industries' sensors.

After importing the sensor block, you need to restart the EV3 MINDSTORMS
software and your sensor will be ready to use.

Chapter 4

[95]

Dexter Industries
Dexter Industries is a small company that makes LEGO sensors. The sensors are
not enclosed and have the raw circuit boards with exposed electrical components.
You actually connect pins and axles through holes in the circuit board. This gives
an interesting look and makes your robot feel like less of a black box. However, this
does make things fragile. Some of their coolest sensors include a GPS sensor and a
110 V relay for switching household appliances. They also have accelerometers and
magnetic compasses. They have one .ev3b file that you can download and import
into EV3 software and that contains all of their sensor blocks. The following image
shows their Thermal Infrared Sensor and you can see the LEGO axles poking
through the holes in the circuit board:

In the following image of the Dexter dPressure sensor you can see that it connects to
the LEGO pneumatic tubes:

Sensors and Control

[96]

When you import their sensor block, all of their sensors will show up in the yellow
sensor palette as you can see in the following screenshot. You can learn more about
Dexter Industries at http://www.dexterindustries.com.

Mindsensors
Another small company making LEGO MINDSTORMS sensors is Mindsensors.
One thing I like in particular about Mindsensors is that they provide sample code
that shows you in detail how to use their sensors. Their sensors are similar to the
other vendors but there are a few items I like in particular. First, they have a motor
multiplexor that allows you to use more than 4 motors with one EV3 brick. My favorite
item is the Sony PlayStation2 controller adapter, shown in the following image.
Controlling your robot with a joystick is a major plus and one that is not built into the
EV3. They give several programs that show how to use the PS2 controller.

http://www.dexterindustries.com

Chapter 4

[97]

Similar to Dexter, here you can see the variety of sensors that Mindsensors
offers in the yellow sensor palette. You can learn more about Mindsensors
at http://mindsensors.com/.

HiTechnic sensors
HiTechnic is the largest of the companies making sensors for LEGO and they have
a formal relationship with LEGO. For several years, they were the main supplier of
the electronics that would adapt the LEGO NXT to be used with high-end motors
for the TETRIX platform, and the FIRST Tech Challenge (FTC) competition. In the
following image, you can see an FTC robot my students built with a LEGO NXT
brain that uses the HiTechnic motor controllers and sensors and metal TETRIX parts.
Robots in For Inspiration and Recognition of Science and Technology (FIRST)
competitions have numbers similar to race cars, as shown in the following image:

http://mindsensors.com/

Sensors and Control

[98]

Most of the HiTechnic sensors look like older NXT type sensors and use actual LEGO
NXT sensor cases. But what is inside the cases is a huge variety of sensors, including
gyros, force sensors, accelerometers, compass sensors, and infrared sensors. At this
time, not all of their sensors have the sensor blocks written to make them compatible
with the EV3. In the following image, you can see several HiTechnic sensors:

One of the most useful products HiTechnic has for the LEGO NXT MINDSTORMS
are the multiplexors that allow you to use multiple sensors beyond the limit of the
four sensor ports on a robot. At this point in time, they have not released the EV3
sensor blocks that will allow you to use them with the EV3. In the following image,
you can see several ports for plugging in additional sensors:

Chapter 4

[99]

If you want to build bigger, more powerful robots with the EV3, you need stronger
motors as you can see in the following image. HiTechnic has been selling motor
controllers that work with the NXT for years and they should release the Motor
blocks for the EV3 software soon.

Sensors and Control

[100]

In the following image, you can see a LEGO NXT brick inside a metal TETRIX robot
with HiTechnic motor controllers. To attach the metal TETRIX parts to your plastic
LEGO bricks, you need special adapter pieces. You can learn more about HiTechnic at
http://www.hitechnic.com/ and TETRIX at http://www.tetrixrobotics.com/.

http://www.hitechnic.com/
http://www.tetrixrobotics.com/

Chapter 4

[101]

MATRIX motor controllers and metal parts
A less expensive alternative to TETRIX is MATRIX. However, the metal parts in
MATRIX are of a thinner gauge than TETRIX and the motors are less powerful.
MATRIX has released the EV3 motor blocks, so you can build a MATRIX robot with
the EV3. In the following image, you can see an EV3 connected to a MATRIX motor
controller hooked into a MATRIX motor and a servo. No special adapter pieces
are needed to build with MATRIX because the holes in the metal are aligned, or on
module with the spacing of the bumps and holes in LEGO bricks. You should note that
the larger motors do need their own separate power supply and will not run off of the
EV3 battery. You can learn more about MATRIX at http://matrixrobotics.com/.

http://matrixrobotics.com/

Sensors and Control

[102]

Vernier sensors
Vernier Software & Technology is a company that makes educational science
hardware and software. Although they started as a company making data
acquisition probes for the physics classroom, they now have a wide range of probes
for chemistry, biology, and engineering. Most of Vernier's probes have British
Telecom Analog (BTA) plugs on them. Vernier sells an NXT-BTA sensor adaptor
that allows you to plug their probes into the EV3. In the following image, you can
see a Vernier Temperature Probe plugged into an NXT-BTA sensor adaptor. As the
adapter has been available for several years, it has the legacy NXT name. Vernier has
a sensor block that allows you to use over a dozen of their probes with the EV3. You
can currently use almost three dozen different probes with the NXT. Future updates
of the Vernier sensor block will allow more of their sensors to be used with the EV3.

Chapter 4

[103]

Although the probes are mostly useful for data acquisition, one could integrate
this into a functional robot. The only area where you will find Vernier has probes
that work with the EV3 that other companies do not is their chemistry and biology
probes. They have a gas pressure sensor, thermometers, pH, salinity, soil moisture,
and oxygen sensors. They actually have several types of temperature probes
depending on your application. Their electrical probes will measure currents,
conductivity, and voltages. Their optical and ultraviolet sensors respond to a wide
range of intensities. One of my favorite sensors is their dual-range force sensor,
which I have used in a wide range of physics experiments from measuring the force
curves of model rocket engines to measuring the force your robot can pull with. The
force sensor is also ideal for measuring how much torque your robot can exert in
order to lift an object. In the following screenshot, you can see a sensor block that
controls several Vernier sensors:

Sensors and Control

[104]

I have my students perform data logging with the EV3 and do gas law experiments
such as Boyle's Law and Charles' Law, as you can see in the following image:

Summary
In this chapter, we learned about the different kinds of sensors you can use with
the EV3. Common to both editions of the EV3 kit, we looked at the Touch Sensors,
the Color Sensor, and Motor Rotation sensors. From the Educational Edition, we
examined the Gyro Sensor and the Ultrasonic motion sensor. From the Home
Edition, we learned about the Infrared Sensor and Beacon. We briefly looked at how
to read sensors both on the computer and on the EV3 brick. We looked at sensors
and motor controllers from Dexter Industries, Mindsensors, HiTechnic, MATRIX,
and Vernier.

In the next chapter, we will examine how to control the EV3 using the buttons on the
robot, and remotely using IR beacon, Wi-Fi, and Bluetooth.

Interacting with EV3
In this chapter, you will learn how to provide input to the robot. You will learn to
interact with:

•	 The Brick Buttons on the EV3 intelligent brick
•	 The buttons on the Infrared Beacon
•	 Bluetooth control using a smartphone
•	 Wi-Fi communication

Push buttons
From the LEGO MINDSTORMS EV3 Help, you may be familiar with using Brick
Buttons to start or stop an action. For instance, in the following program,
the robot will move until a Brick Button is pushed.

Using the Brick Buttons to enter information will take some advanced programming
and involve variables, case structures, and loops. Using the Brick Buttons on the EV3
brick, we are going to select the value for the speed of the robot. We are going to
write a program that has a Switch block and a Loop to select the speed.

Interacting with EV3

[106]

The program will begin by prompting the user with text displayed to the EV3 brick
screen. To control how fast the robot moves, we will use a variable called Speed. The
program then enters a loop to register each press of the Brick Buttons. When the loop
is terminated, the updated value of the variable will be sent to a motor command.

First, we need to display commands for the user on the EV3 screen. Most of the first
row of this program is used to send text to the screen. You can only program one
line of text at a time, so it will take four Display block commands to give the relevant
information to the user. Notice that only the first Display block has the erase input
checked and that the other Display blocks have the y inputs with greater values so
that the wording does not overlap. In the following screenshot, we can see what the
screen on your EV3 brick will look like when you run this program:

Next, there is a Brick Button Wait block followed by writing to a Variable block
called Speed that we will set to 0. After defining the Speed Variable block, we create
an Infinite Loop block called Enter Speed. This is an example of when knowing the
title of the Loop block is important.

Later, we will write an interrupt for this Loop and call it by name. Inside the loop,
there is a Switch block with four case structures that will be determined by the
Brick Buttons.

Chapter 5

[107]

When you create a Switch block, it defaults to two cases and you can add extras.
This Switch block is going to allow us to increase or decrease the value of the Speed
Variable block. In the following screenshot, the case structure is in the tabbed view.
We will examine the case structure in the expanded or flat view in a moment.

Before the Switch block, there is a Brick Button Wait block. This Wait block is waiting
for a change of state of the buttons. Without this Wait block, when you press a button
and continue to hold the button, the loop will run (and select the case of that button)
for as long as the button is held. The initial Wait block allows you to only progress
through the loop once every time the button is pushed. If you wanted to create an
input where you would quickly scroll through numbers, you would not need this
Wait block. As you can see in the following screenshot, after the Switch block, the
value of the Variable block is displayed on the screen. A numerical data wire sends
the value of the Speed Variable block to the text input plug of the Display block.

Interacting with EV3

[108]

After the loop is terminated, the robot will move forward. In the preceding
screenshot, we can see a data wire coming from the output of the Speed Variable
block to the power input plug of a Motor block.

Now, let's revisit the case structure but with an expanded view. This will allow us
to examine each of the four cases, as we can see in the following screenshot:

Chapter 5

[109]

In the following points we will examine each of the four cases of this case structure
or switch block.

•	 In the first case, selected by the up Brick Button, the Speed Variable block
is read; the value 1 is added to it using a Math block, and the variable is
re-written with this increased value.

•	 In the second case, selected by the down Brick Button, the Speed variable is
read; the value 1 is subtracted from it, and the variable is re-written.

•	 The third case, chosen by the Center button, is responsible for breaking the
loop. This contains a Loop Interrupt block that breaks the Loop called Enter
Speed and moves the program past this Loop. This is an example of where
the naming of a Loop is critical. The Loop Interrupt block calls the Loop to be
interrupted by its name, as we can see in the following screenshot:

•	 Because the Switch is inside a loop, we actually need a default case that we
do not plan to use. This case is intentionally a null operation, because we
don't want something to happen every iteration of the loop. If we chose
one of the other cases as the default, it would choose that case every other
iteration of the loop.

Interacting with EV3

[110]

IR remote buttons
The EV3 MINDSTORMS software Help provides good information on using the
IR remote to control and send information to the robot. The following screenshot is
an adapted version of what LEGO presents. Although the IR remote has only five
buttons, the combination of buttons will allow you to send more commands than the
Brick Buttons. Using different combinations of the IR remote buttons, the IR remote
can send 11 different codes to brick; thus, you can actually have 11 different choices
in a case structure.

Chapter 5

[111]

In the preceding screenshot, I have written a code with six different choices in
addition to the default choice in the case structure.

Bluetooth control
It is well worth while to pair your programming computer with your EV3 brick. This
will save the need to tether the brick each time you want to download your code. If
you are working in an environment where there is more than one EV3 robot, you
should assign a unique name to the robot. This can be done via the tether. If you
have enabled Bluetooth on your computer, you need to make the connection from
the EV3 brick. Next, you need to enable Bluetooth on the EV3 brick. In the following
screenshot of the EV3 brick display screen, you need to select Bluetooth from the
settings menu on the EV3 brick.

The Bluetooth menu has several options. Make sure you have checked both
Bluetooth and Visibility, as you can see in the following screenshot. When
controlling the robot via Bluetooth from your computer, you have to disable or
uncheck the iPhone/iPad/iPod option selected on your EV3 Brick. After checking
the appropriate boxes, if you click on Connections, you will be able to search for,
and pair with, your computer.

If you are still using Version 1.1.0 of the LEGO MINDSTORMS
software, Bluetooth communication does not work with newer
versions of Mac OS X.

Interacting with EV3

[112]

You should also assign a passcode so that another user cannot accidentally take
control of your robot. The default passcode is 1234.

Keep in mind that the range of Bluetooth is limited. It gives you greater flexibility
than having a tether cable, but not as much as using Wi-Fi.

Smart device control
Using your smartphone or a tablet app to control your robot is easy. There are
numerous apps for the older NXT MINDSTORMS robot kits; over time there will
be several for the EV3. The official LEGO app is called LEGO MINDSTORMS Robot
Commander, and is available on Google Play for Android and on the Apple App
Store for the iPhone and iPad. When pairing with your smart device, you need to
make sure to select the special iPhone/iPad/iPod option on the Bluetooth setting on
your EV3 brick.

Chapter 5

[113]

Robot Commander has controls ready to use for all of the robots from the Home
Edition kit. However, you will want to create your own robot and controller. LEGO
Commander will control assigned motors. You can create screen-based virtual
joysticks, sliders, switches, or buttons. You can see the virtual joystick at the top
left of the preceding screenshot. You can also use the accelerometers built into
your smart device to control the robot's motors by tilting your smart device. LEGO
Commander will allow you to take readings from the sensors available in the Home
Edition, the Touch Sensor, the Color Sensor, and the Infrared Sensor. The bullseye
in the preceding screenshot will light up when the Touch Sensor is pushed in.
Instead of discrete numerical information, LEGO Commander will present a visual
reading for the Color and IR Sensors. The brightness of the Color Sensor icon is
proportional to the intensity the Color Sensor reads, as you can see in the circle
below the joystick. The distance reading from the IR Sensor fills up the trapezoidal
icon in the preceding screenshot.

Interacting with EV3

[114]

Wi-Fi control
Although a highlight of the EV3 set over the older NXT is that it is advertised to be
Wi-Fi capable, this is something of an exaggeration. There is a USB port that allows
you to insert a Wi-Fi dongle. The current versions of the firmware do not allow
compatibility with many dongles. The Wi-Fi dongle recommended by LEGO is the
only one I could find that would actually work. Additionally, you will need to design
your robot so the dongle does not protrude from your robot in an awkward way. In
the following image, you can see that I have a Wi-Fi dongle resting just above the
motor. You could also use an angled USB adaptor, so your dongle does not protrude
out of the side of the robot.

In addition to only a few choices for the Wi-Fi dongle, you need to make sure that
you can successfully communicate with your router. In the preceding screenshot,
you can see the Netgear WNA1100 dongle, sold by LEGO. For ease of use, you may
want to set your router up without encryption or with WPA2 encryption. You should
not have to enter the passcode directly onto the brick. If that is the case, you may
need to change the encryption level on your wireless router. Even if your computer
is on the network, you will still need to select the network through the EV3 software,
as you can see in the following screenshot:

Chapter 5

[115]

I found that, once properly set up, the speed of communication is faster than
Bluetooth, but this is a significant factor only with large programs. The main
benefit of using Wi-Fi is the increased range of communication. With Bluetooth,
you are limited to several feet, whereas with Wi-Fi, you are only limited by the
range of the network.

Summary
In this chapter, you learned how to control and communicate with the EV3 robot by
several different means. We controlled the robot using Brick Buttons, the Infrared
Beacon, and smart device apps. You also saw that you can communicate wirelessly
with the EV3 brick from your computer with either Bluetooth or Wi-Fi.

In the next chapter, we will explore various forms of output from the robot,
including sound, lights, and the display.

Output from EV3
In this chapter, we will explore how to send output from the EV3 brick. Output
from the EV3 can be visual via the display screen, the built-in brick lights, or external
lights. We will use the speaker to generate sounds. In this chapter, we will cover:

•	 How to display stock images
•	 How to use the Image Editor
•	 How to display your images
•	 How to display data
•	 Using the brick lights
•	 Powering non-EV3 LEGO lights
•	 Using the Sound Editor
•	 Playing sound files
•	 Making music

Display
In the previous chapter, we were introduced to the idea of displaying control values
on the EV3 screen. This feedback is useful so you do not have to be connected to
your computer to make changes to the way the program is executed.

Output from EV3

[118]

After you have dragged a Display block onto your Programming Canvas, if you click
on the upper right-hand corner on the File Name, you can load an image. As you can
see in the following screenshot, the EV3 software has numerous stock images that
you can use in the LEGO image files:

By clicking on the Display Preview button on the upper left-hand corner of the
Display block, the display preview is opened. If the Display block is inside a loop or
switch, the preview may get cut off. You can resize the loop or switch to make room
for the display preview. The image in the display preview is pixelated. Although
the EV3 software could generate a high-resolution image, the display preview is
reflecting the actual lower resolution of the display on the EV3 brick.

Chapter 6

[119]

Image Editor
The Image Editor is a great way to create visual messages to send to your user. The
EV3 walks you through the basics of creating an image using the Image Editor. You
can also import .jpg, .png, and .bmp images and edit them. If you are importing a
color image, keep in mind that the image will be converted to a low-resolution
black-and-white image. You can see in the following screenshot that the resolution
of the Image Editor is pixelated, reflecting the lower resolution of the EV3 brick:

After you have created and saved your image, you can view what it will look like in
your program before you display it on the EV3 brick. Similar to what we did earlier,
by clicking on File Name in the upper right-hand corner of the Display block, you
can load your image. If you are using the image you created with the Image Editor,
it can be found in the Project Images folder.

Output from EV3

[120]

You cannot transfer the images you have created between projects within the EV3
software. Thus, if you have created a great image that you want to use in multiple
programs, you will need to export the image from the Project Properties menu, as
you can see in the following screenshot:

Chapter 6

[121]

Display data
A very simple example of useful code would be to display a time counter on the
screen. To do this, you wire the output from a Timer sensor block to the wired input
of the Display block. You will want to erase the screen whenever the new time value
is displayed.

At the same time, you can display the value of a sensor on the same screen. In the
following screenshot, the value for the Color Sensor will be displayed on the screen.
You can choose the x and y coordinates of the text, and I have the sensor value
displayed just below the time. Additionally, the screen is erased only during the first
Display block. When you click on the Mode Selector for the Display block, there are
actually two text modes, Grid and Pixels. In the following screenshot, I have used
Text Grid and the program writes the sensor values to row 3 on the Display screen.
Each row in the grid is actually 10 pixels high.

Output from EV3

[122]

As you saw in Chapter 5, Interacting with EV3, we can also display the value of a
variable. In the next program, I have added a parallel sequence where the screen
displays the number of times a Touch Sensor has been pushed. There is a half-second
delay in the loop so you can record discrete touches. This delay will prevent the
program from adding to the value of the variable touches continuously while the
Touch Sensor is pushed.

Brick lights
Brick lights are another useful way to provide visual feedback from your robot.
Coordinating the color of the brick with other parts of your program can be
interesting. In the following code, the color of the brick is dependent on the value
of the Color Sensor. If the Color Sensor detects black, the brick will be orange. If the
Color Sensor detects white, the brick will glow green. Otherwise, by default, if the
sensor detects anything other than black or white, the brick will glow red, as shown
in the following screenshot:

Chapter 6

[123]

This allows for a cool-looking EV3 brick, and allows your robot to visually display
information that can be seen from a distance. You may want to have lights that are
not built into your EV3 brick. In order to use off-brick lights, you will need to use
some of the legacy NXT MINDSTORMS parts.

Output from EV3

[124]

Legacy NXT/RCX lights
Even before the NXT kit, the earlier RCX MINDSTORMS kit contained lights and a
very simple motor that did not have a shaft encoder. To use these motors and lights
with the NXT brick, you needed a converter cable. Because of the new Auto-ID
system and digital motor control in the EV3, you are technically limited to using the
brick lights. There are several solutions involving soldering and rewiring the cables
with an extra resistor to allow older RCX motors, power function motors, and lights.
The extra resistor would send a code to the Auto-ID system. To avoid soldering, you
can use the black MINDSTORMS NXT converter cable to take the output from the
EV3 and sends it to a two wire electrical signal. In the following image, you can see a
LEGO light bulb from the NXT kit powered by the EV3:

Even with the NXT converter cable, you will find that legacy motors and lights will
not work with the EV3 brick because the EV3 is still searching for the Auto-ID signal.
To avoid soldering and rewiring the cables, in the following screenshot is a simple
program that you can use to power the lights (or RCX motors). The new control
block here is the Unregulated Motor block. This block sends an electrical signal
but does not wait for feedback from the Motor Rotation sensors, unlike the Large
Motor block that would search for this feedback. We are not using the Unregulated
Motor block as it was intended. If you controlled a normal EV3 motor, it would run
continuously. By changing the motor power and inserting the changes into a Loop,
we are tricking the EV3 into continuously powering an analog device. You can also
do this with the older RCX motors. If we did not change the motor power setting
from 100 to 99 (or any other value), the lights would only flicker for an instant.

Chapter 6

[125]

Sound
Using the microphone in your computer, it is very easy to use the Sound Editor to
record sounds into a file to be used.

Output from EV3

[126]

The stock sound files contain all of the system sounds and a variety of robotic
noises. There are also recordings for all of the numeric digits. You could easily write
a program for a countdown. In the following program, the speaker plays a Count
Down using a combination of Switches (or case structures) and Loops. The loop
runs five times, and the index of the loop chooses the path of the Switch. Since the
index counter on the loop actually counts up, I used a Math block to allow the output
to count down. Although I could have written this code using a linear sequence of
blocks, I wanted to introduce another example of using a case structure to choose a
sequence of commands.

Chapter 6

[127]

Music
With the Sound blocks, there are three modes. You can play the sound completely
before moving onto the next block, play the sound once while the program runs
the subsequent blocks, or play the sound repetitively while the program runs the
subsequent blocks. If you choose the parallel modes, you will find that the sounds
will only play as long as the program is running.

If you choose to use the musical tones of the Sound block, you have a choice between
a musical note, or the actual physical frequency. By using the Tone mode, you can
play a continuously changing frequency, whereas the Note mode is limited to the
discrete values of the musical scale. In the following screenshot, the Loop first plays
a continuous increase in frequency value where the input wire to the Sound block is
a numeric value:

The range of frequencies the EV3 speaker can play starts at 250 Hz and peaks out
at 10,000 Hz. In the preceding program, the other interesting block is the Advanced
Math Mode of the Math block. You can program simple algebraic equations.

Summary
In this chapter, we explored various forms of output from the robot, including
sound, lights, and, the display. You have learned about two of the tools in the
EV3 software: the Image Editor and the Sound Editor.

In the next chapter, you will learn about advanced programming techniques,
including data operations, My Blocks, variables, constants, arrays, loops,
conditional statements, and case structures.

Advanced Programming
In this chapter, we will explore some more advanced algorithms with a focus on
what we need for navigation. This will be particularly useful for programming your
robot to navigate an obstacle course or play a complex game, such as FIRST Lego
League. In this chapter, we will cover how to:

•	 Use Loops and Switches to drive in a square
•	 Use Loops and Switches to avoid an obstacle
•	 Navigate using Motor Rotation sensor feedback
•	 Navigate using Gyro Sensor feedback
•	 Simplify our program using My Blocks
•	 Simplify our program using Arrays

Using any of our four base robots, we will make the robot go forward, make a 90
degree turn, go forward, and repeat this sequence several times. In this chapter, I
have included programs using both the Gyro Sensor and a process of navigation
called dead reckoning. Dead reckoning, which is short for deduced reckoning,
consists of calculating how far the wheels of your robot should turn by using
the built-in shaft encoders (Motor Rotation sensors) on the wheels. For the dead
reckoning programs, I used the skid-bot from Chapter 3, Drive Train and Chassis.

Loop and the Motor Rotation sensors
Let's start by using dead reckoning to drive in a square. As you can see in the
following screenshot, we will first use a Loop block from the Flow Control palette
and select the Count mode for the Loop block. We can have the robot repeat this
turning sequence several times. Inside this loop, the Move Steering block will tell
the robot to move forward for one rotation of the wheels. We will then have a Move
Steering block that will turn the robot. Remember that a 500-degree turn of the motor
shaft is not equivalent to a 500-degree turn of the entire robot.

Advanced Programming

[130]

This is a 500-degree turn of the motor shaft and the wheels, which I chose based on
the design of the skid-bot. Depending on which robot design you chose to use, you
will need to vary the value that the rotation sensor uses to trigger the stop of the
turning motion to approximate a 90-degree turn. If you use any of the other robots
from Chapter 3, Drive Train and Chassis (such as the caster-bot or the tread-bots) you
will have to change the values for the rotation of the motor shaft. You could base
this value on the diameter of the wheels you are using. Alternatively, you could
determine the relationship between the distance and the turning of the wheel by
using Port View and a ruler.

Try running this program. As you can see, it takes patience and some trial and error
to get the robot to turn close to 90 degrees. Additionally, the amount that the robot
turns can vary with the surface, especially when using treads. If you add several
appendages to your robot, changing the center of mass of your robot can also affect
how the robot turns.

Loop and the Gyro Sensor
Now we will repeat this exercise using the Gyro Sensor that comes with the
Educational Version of the EV3 kit. If you have the Home version, you might
consider buying the LEGO Gyro Sensor or the Gyro or Compass sensor from
HiTechnic or other third-party vendors. You can buy the LEGO EV3 Gyro Sensor
directly from LEGO, part number 45505, for about $30. In the following screenshot,
you can see that the loop is the same except we will use a move to turn while
steering until the Wait block is triggered by a change in state of the Gyro Sensor
by 90 degrees:

Chapter 7

[131]

Before you run the program, you need to make sure the robot is absolutely still. It
is critical to calibrate the Gyro Sensor. You can do this either by unplugging it and
plugging it back in while the robot is stationary, or by changing the mode of the
Gyro Sensor. You can change the mode using Port View or by writing this into
your program. We can now run this program. If you notice that your Gyro values
keep changing even though the robot is not moving, this means the gyro needs to
be calibrated.

The Gyro Sensor detects rotational speed. You can use the EV3 software to calculate
the angle or measure the angular speed. Using the Gyro Sensor will allow you to
quickly make accurate turns. The Gyro will drift over time, so it is a good idea to
reset the Gyro when using it in your programs. Including a Reset Gyro block and
calibrating the Gyro Sensor are both good ideas when using the Gyro Sensor.

With both dead reckoning and the Gyro Sensor, you will notice that, using this
simple code, the robot does not make a perfect square. This is because you are asking
the robot to stop exactly at a discrete signal, by which time it is too late because of
the inertia of the robot. In the remaining sections, we will optimize the motion of the
robot and program the robot to steer around obstacles.

Advanced Programming

[132]

Troubleshooting with the Gyro Sensor
We want to diagnose why the robot is not turning in a perfect square. We will alter
our program from the previous section by having the robot display on the screen what
angle the sensor is currently reading, as you can see in the following screenshot:

In the following steps, we will write a program to troubleshoot why the robot is not
turning in a perfect square.

1.	 Before the Loop, clear the EV3 display screen with a Display block.
2.	 Set the Display block to Text and replace the word Mindstorms with an

empty space.
3.	 Follow the Display block with a reset Gyro block to nullify the Gyro Sensor.
4.	 Reduce the number of iterations of the Loop block to 4 iterations.
5.	 Inside the Loop, add a Move block set to stop after the Wait for the

Gyro block.
6.	 Place a Display block set to Text Grid mode with the erase input unchecked.
7.	 Add a Wait block (for 2 seconds) to allow you time to read the angle.
8.	 Draw a wire from the angle output plug of the Wait Gyro block to the text

input plug of the Display block. Although the Wait block executes upon
changes in 90 degrees, the output plug will send the value of the angle
measurement after it has stopped. If you were to execute the program now,
you would find that the displayed text would overlap. We can control the
placement of text on the screen using the index counter of our loop.

9.	 Create a Math block at the beginning of the loop that will multiply
numbers by 2.

10.	 Run a wire from the Loop index to the Math block.
11.	 Run a wire from the output of the Math block to the Y coordinate input of the

Display block.

Chapter 7

[133]

As the loop runs through subsequent iterations, the index increases and so will the
placement of text on the display screen.

When you look at the numbers on the brick display, you will find that on each turn,
the robot may be overshooting the turn. This is because the robot does not begin
stopping until it reaches 90 degrees. And as it overshoots each turn, these errors
build on each other to create a path that is anything but a perfect square.

One challenge in using dead reckoning is to figure out the relationship between the
change to rotation of the wheels and the change in rotation of the robot itself. Now,
let's examine a similar program using the Motor Rotation sensor of one of the drive
motors. It is better to measure the quantity of rotations for the motor on the outside
of the turn since this motor undergoes a larger number of rotations. The Motor
Rotation sensor has been reset at the beginning of the program. The Wait for sensor
block uses the Motor Rotation sensor instead of the Gyro Sensor. The Move block
does not have an output plug from the rotation sensor, so we had to use the output
plug of Wait for the sensor block.

Of course, if your robot is connected to your computer via Bluetooth or Wi-Fi, you
could read the value of the rotation sensor on the Port View of your computer. It is
also a useful technique in using dead reckoning to have the robot move forward in a
straight line to determine the change in the rotation sensor reading.

Advanced Programming

[134]

Switch or two-level controller
We will now use a case structure to add a correction to the turns. In the EV3
language, a case structure or if…then…else statement is called a Switch block.
The Switch can be controlled by sensors and other logic statements. Although you
typically will have only two cases, you could add several other branches to the
case structure. Each branch of the Switch is called a case statement and can contain
several programming blocks. We will use the Gyro and rotation sensors to define the
case to try and "zigzag" onto the exact 90-degree angle to produce a square. In the
following screenshot, you can see the entire code. As this program is extensive, it is
worth noting how the wires are used to organize the code into rows, so you can see
the entire program on one screen at the same time:

Initially, we asked the Gyro Sensor to only wait until it turned 90 degrees on each
leg of our square. Now we will adjust our code to ask the robot to stop turning when
it reaches, 90, 180, 270, and 360 degrees. We will do this using a Variable block set
to write numeric mode. We will give this Variable block the name Angle. The index
counter on the loop runs through the sequence 0, 1, 2, and 3. We will use two math
functions to come up with these degrees. Run a wire from the Index Counter to
a Math block set to math mode and add 1 to each number. The output of the add
Math block should go to a Math block set to multiply mode. This number should be
multiplied by 90 and the output sent to the Variable block. After the Move Steering
block, the Wait Gyro block will be triggered when the sensor reads an angle greater
than the Variable block.

Chapter 7

[135]

This brings us to the Switch block. The Switch block will have two cases defined
by readings from the Gyro Sensor. If the Gyro Sensor has a reading greater than
the output of the Variable block, it will follow the true case, which contains a Move
Steering block set to the left. If the Gyro Sensor has a reading less than or equal to
the output of the Variable block, it will follow the false case, which contains a Move
Steering block that is set to the right. We will allow this correction to repeat itself
several times by placing it inside a Loop block that will repeat the decision making
for two seconds. The result will be a zigzag motion centered around the exact angle.

Advanced Programming

[136]

The preceding screenshot has an expanded or flat view showing both cases of the
switch. You can also use a tabbed view of the switch, as shown in the following
screenshot that shows the true case:

The following screenshot shows the false case of the switch:

Chapter 7

[137]

In the preceding program, we used a two-level controller with a logic switch. We
hope to go as straight as possible, but because we a using a relatively weak algorithm
for controlling the robot's turns, we end up with a chaotic zigzag motion. It would
be more effective to use a proportional algorithm that would slow the robot down
as it approaches 90 degrees. We will explore proportional algorithms in Chapter 8,
Advanced Programming and Control.

Three-level controller
Now, let's examine a version of this program using the rotation sensor. This program
is similar to the previous program except that the angle is set to 400 (the probable
rotation of the wheels) and the blocks are set to the rotation sensors instead of the
Gyro Sensors. The Gyro program used a two-level controller. A path in the case
structure was chosen based on the robot's position relative to a setpoint value. Notice
that, in this program, I have a switch within a switch. This allows for a three-level
controller. When the robot is actually at the set-point value, no motion takes place.

Advanced Programming

[138]

In the preceding screenshot, you can see the path the switch takes for the true case
of when the Motor Rotation sensor is greater than the value of the angle variable. In
the following screenshot, you can see the false case, when the value is not greater
than the value of the angle variable. You can see in the screenshot that to make three
levels we need the switch within a switch. In the embedded switch, if the value of the
rotation sensor is less than the value of the angle variable, the robot turns the other
way. For the false case of the embedded switch, the Motor Rotation sensor must be
equal to the value of the angle variable. The robot does not move and we use a Loop
Interrupt block to end the Loop. For the Loop Interrupt block, we must name the
Loop that you want to end.

Subroutines or My Blocks
In this section, we will program the robot to move forward until it encounters an
unknown obstacle with the Touch Sensor and then attempt to steer around the
obstacle. An obstacle such as a table or chair leg would be ideal. We will program
the robot to take input from the brick buttons. The program we will initially write is
inefficient and repetitive. It is actually a good example of how you shouldn't write
a program. We will first simplify the code using the EV3 version of a subroutine or
function that is called My Block. You can think of a My Block as a small program
within a large program. It is called a My Block because it is a block that you create.

Chapter 7

[139]

At the beginning, the robot will move forward until the Wait block is triggered by a
change in state of the Touch Sensor. We will then program the robot to move back
for one rotation of the wheels and display the following message onto the brick
screen: Press left or right. The next Wait block will wait for the user to press one
of the brick buttons on the EV3 brick. This will be followed by a case structure or
Switch Flow block.

The Switch Flow block has two cases, one if the left brick button is depressed and
the other if the right brick button is depressed. Note that the default case of the case
structure is actually the second case. So the right button does not actually have to
be pushed. If any button other than the left button is pushed, the second case will
be chosen. The user will determine if they want the robot to avoid the obstacle by
taking a detour around the left side or around the right side of the obstacle. Each
case contains 11 blocks. The following command blocks inside the case, we can see
the robot will turn until the Motor Rotation Wait block tells it to stop. The robot will
then move forward, turn, and repeat. The sequence is quite long. You should also
note that we alternate between using the rotation sensor on port B and port C. This
is because, while turning, one of the wheels travels farther than the other. We want
to use the outside wheel to keep track of the quantity of our motion. Later in the
chapter, we will explore a trick to get around this.

Advanced Programming

[140]

At this point, we can download and execute the code and the robot should be able to
steer around a small rigid object.

We can now simplify the code using a My Block or subroutine. Select all of the blocks
inside one branch of the case structure. To select several blocks, you should click and
drag a box around the blocks you want to select. You will know the blocks have been
selected because they will be highlighted with a light blue perimeter. Then, from
the pull down menus, navigate to Tools | My Block Builder, as you can see in the
following screenshot:

Chapter 7

[141]

The My Block Builder screen will pop up and ask you to name the My Block, which
is akin to naming a subroutine. You can also write a description and select an icon.
You can also design an icon. We will name this My Block LeftTurn. I have chosen a
rotation sensor as the visual icon, as shown in the following screenshot:

Advanced Programming

[142]

You might also notice that the My Block can be modified to accept parameters. Do
not press the Finish button yet. It is not possible to alter the parameter setup of My
Block once you have created it. In our program, input parameters will be useful, so
we can make quick changes to the maximum amount of rotations the Motor Rotation
sensor Wait block has to wait for without needing to use a variable. You can see in
the following screenshot that I have chosen a slider to alter this parameter and set the
limits to 0 and 1000 degrees of rotation for the sensor. Note that My Block can also be
created in such a way that it accepts wires for the input and output parameters. Some
advance planning for the My Block creation is needed because, as mentioned earlier,
it is not possible to alter the parameter setup of My Block once you have created it.

In the preceding screenshot, you can see that I have chosen a rotation icon for the
input parameter, which I call Angle. You can choose Parameter Icons by clicking
on the third tab of the My Block Builder screen.

You should do the same for the other branch of the case structure (or switch), but
instead, name that My Block TurnRight. At this point, we can clean up the code
by deleting a lot of the empty space that has been created inside the Switch block,
as you can see in the following screenshot:

Chapter 7

[143]

After you have defined a My Block, you can find it in the Programming Palette
under the commands in the light blue programming blocks tab. Before we run this
program, we need to make some small changes inside My Block. If you double-click
on My Block, you can see what is under the hood. If you are using input and output
parameters, you will need to connect the wires from those parameters to the blocks
inside My Block. In this base, I have drawn wires from the input parameter to all of
the Wait Motor Rotation sensor blocks:

Here, I have done the same thing for the My Block TurnRight:

Advanced Programming

[144]

We can now download and execute this simplified code. After this Motor Rotation
sensor-driven solution, you can now try to make My Blocks for the Gyro version of
this program, which you will find in the following screenshot:

Arrays
We just saw how to simplify the program to avoid an obstacle using a My Block
(subroutine). Now, we will instead optimize the program using an array, whereas
in the LEGO EV3 software, a variable can have one value, an array can have several
elements, each with its own value. To learn how an array in EV3 works, you will first
need to write a program to display a series of numbers on the EV3 brick screen.

First, clear the display screen. Then define a variable called Steering. By clicking on
the mode selector of the Variable block, we can choose to write to an array instead of
writing to a numeric variable. The LEGO EV3 software contains numeric and logic
(or Boolean) arrays. It does not currently have arrays for strings (or lists).

Chapter 7

[145]

We will write the series of numbers [100, -100, -100, 100] into the array. You
can enter elements by clicking on the input value of the array variable block. This
will be useful later when we use this same array variable block in the obstacle code.

We will now create a loop called Display Steering that will repeat four times. The
first block in our loop will read array variable block. It will then send the information
from the variable via a wire steering into an array operation block. The plugs for an
array wire have two semicircles. Notice that the wire for an array is much thicker than
the wires for numeric data. We will also run a wire from the loop index into the array
operation. This will allow us to read a different element in the array every iteration of
the loop. This element will be sent as text to the display screen via a wire. Remember
to uncheck the clear screen parameter on the Display block so that it will not erase each
time it runs. Again, the y coordinate location on the display screen is increased by a
multiple of the loop index.

Advanced Programming

[146]

When you run this program, you should see the elements of the array displayed in a
column on the brick screen every 2 seconds.

Now we are going to use an array to modify the obstacle code we wrote earlier.
Let's first examine the version of our program using the Gyro Sensor. You will
need to add the write array variable block in the beginning of the program before
the case structure.

Chapter 7

[147]

Replace the code you previously wrote in the left button case structure with the
following blocks:

1.	 First, place a loop that will run for 4 counts into the case structure.
2.	 Next, send the output from a read array variable block to an array

operation block.
3.	 Run a wire from the loop index to the array operation block.
4.	 Then run a wire from the array operation block output to the move steering

block direction input.

The array is telling the robot in which direction to turn. Remember, the array
contains the elements [100, -100, -100, 100]. If the program chooses the first
or last elements, then the steering value is to the left. If the program chooses the
second or third elements, then the steering value is to the right. During each loop,
the element that is chosen is determined by the loop index. The robot will turn until
the Wait Gyro block reaches 90 degrees. The robot will then move forward for two
rotations of the wheel and the loop will repeat.

The other side of the case structure, resulting when the right (or any other) button
is pushed, has a similar code. We can modify the direction of the robot by adding a
Math block, which will send the negative of the value of the array elements to the
Move Steering block.

Now, let's examine a version of the array code using the rotation sensor and dead
reckoning. The code is almost identical to the Gyro array code. With the My Block
code, we paid careful attention to which wheel we monitored for the number of
rotations. However, we also used a gentle turning (75 percent) so that the wheels
were not turning at the same rate. In this array code, the turning rates of the wheels
are at 100 percent. In a full speed turn, the wheels will rotate exactly opposite of each
other. This means that for every forward rotation of the motor connected to port B,
the motor connected to port C rotates once backwards.

Advanced Programming

[148]

Thus, we are not concerned about which motor rotation sensor we are monitoring.
This is a very useful trick in dead reckoning.

Summary
In this chapter, we explored various programming techniques such as My Blocks,
Switches, and Loops. We used combinations of switches and loops to cause our
robot to drive in a square and avoid an obstacle. We used two-level and three-level
controllers to help us navigate and make precise turns. You learned how to navigate
using both dead reckoning and the Gyro Sensor. You learned how to simplify your
programs using My Blocks and Arrays.

In the next chapter, we will develop a proportional controller that determines the
position using either the Ultrasonic or the Infrared Sensor. We will also develop a
proportional line following robot using the Color Sensor.

Advanced Programming
and Control

In this chapter, we will explore advanced controlling algorithms to use for sensor-
based navigation and tracking. We will cover:

•	 Proportional distance control with the Ultrasonic Sensor
•	 Proportional distance control with the Infrared (IR) Sensor
•	 Line following with the Color Sensor
•	 Two-level control with the Color Sensor
•	 Proportional control with the Color Sensor
•	 Proportional integral derivative control
•	 Precise turning and course correction with the Gyro Sensor
•	 Beacon tracking with the IR sensor
•	 Triangulation with two IR beacons

Distance controller
In this section, we will program the robot to gradually come to a stop using a
proportional algorithm. In Chapter 4, Sensors and Control, we wrote a program
where the robot would stop a set distance from a barrier using feedback from
the distance sensors. These programs used a discrete reading where the robot
would run at full speed until the sensor feedback triggered the robot to abruptly
stop. In a proportional algorithm, the robot will gradually slow down as it
approaches the desired stopping point.

Advanced Programming and Control

[150]

Before we begin, we need to attach a distance sensor to our robot. If you have the
Home Edition, you will be using the IR sensor, whereas if you have the Educational
Edition, you will use the Ultrasonic Sensor. Because these sensors use reflected
beams (infrared light or sound), they need to be placed unobstructed by the other
parts of the robot. You could either place the sensor high above the robot or well
out in front of many parts of the robot.

The design I have shown in the following screenshot allows you to place the sensor
in front of the robot. If you are using the Ultrasonic Sensor for FIRST Lego League
(a competition that uses a lot of sensor-based navigation) and trying to measure the
distance to the border, you will find it is a good idea to place the sensor as low as
possible. This is because the perimeter of the playing fields for FIRST LEGO League
are made from 3- or 4-inch- high pieces of lumber.

Infrared versus Ultrasonic
We are going to start out with a simple program and will gradually add complexity
to it. If you are using the Ultrasonic Sensor, it should be plugged into port 4, and
this program is on the top line. If you are using the IR sensor, it should be plugged
into port 1 and this program is at the bottom line. In this program, the robot moves
forward until the Wait block tells it to stop 25 units from a wall or other barrier.
You will find that the Ultrasonic Sensor can be set to stop in units of inches or
centimeters. The Ultrasonic Sensor emits high-frequency sound waves (above the
range of human hearing) and measures the time delay between the emission of the
sound waves and when the reflection off an object is measured by the sensor.

Chapter 8

[151]

In everyday conditions, we can assume that the speed of sound is constant, and
thus the Ultrasonic Sensor can give precise distance measurements to the nearest
centimeter. As mentioned in Chapter 4, Sensors and Control, using presence we
could use the Ultrasonic Sensor to detect other robots or a loud sound. In other
programming languages, you could even use the Ultrasonic Sensor to transmit
data between two robots. The IR sensor emits infrared light and has an IR-sensitive
camera that measures the reflected light. The sensor reading does not give exact
distance units because the strength of the signal depends on environmental factors
such as the reflectivity of the surface. What the IR sensor loses in precision in
proximity measurements, it makes up for in the fact that you can use it to track on
the IR beacon, which is a source of infrared light. In other programming languages,
you could actually use the IR sensor to track on sources of infrared light other than
the beacon (such as humans or animals).

In the following screenshot, we have a simple program that will tell the robot to stop
a given distance from a barrier using a Wait for the sensor block. The program on
the top of the screenshot uses the Ultrasonic Sensor, and the program on the bottom
of the screenshot uses the IR sensor. You should only use the program for the sensor
you are using. If you are downloading and executing the program from the Packt
Publishing website, you should delete the program that you do not need.

When you execute the program in the preceding screenshot, you will find that the
robot only begins to stop at 25 units from the wall, but cannot stop immediately.
To do this, the robot will need to slow down before it gets to the stopping point.

Advanced Programming and Control

[152]

Proportional algorithm
In the next set of program, we create a loop called Slow Down. Inside this loop,
readings from the Ultrasonic or Infrared proximity sensor block are sent to a Math
block (to take the negative of the position values so that the robot moves forward)
and then sent to the power input of a Move Steering block. We can have the loop end
when it reaches our desired stopping distance as shown in the following screenshot:

Instead of using the exact values of the output of the sensor block, we can use the
difference between the actual position and the desired position to control the Move
Steering block, as shown in the following screenshot. This difference is called the
error. We call the desired position the setpoint. In the following screenshot, the
setpoint is 20. The power is actually proportional to the error or the difference between
the positions. When you execute this code, you will also find that if the robot is too
close to the wall, it will run in reverse and back up from the wall.

Chapter 8

[153]

We are using an Advanced Math block in the following screenshot. You can see that
we are writing a simple equation, -(a-b), into the block text field of the Advanced
Math block:

You may have also noticed that the robot moves very slowly as it approaches the
stopping point. You can change this program by adding gain to the algorithm. If you
multiply the difference by a larger factor, it will approach the stopping point quicker.
When you execute this program, you will find that if you increase the gain too much,
it will overshoot the stopping point and reverse direction. We can adjust these values
using the Advanced Math block. We can type in any simple math function we need,
as shown in the following screenshot. In this block, the value of a is the measured
position, b is the setpoint position, and c is the gain.

Advanced Programming and Control

[154]

The equation can be seen in the following screenshot inside the block text field of the
Advanced Math block:

We can also define the desired gain and setpoint position using variables. We can
create two Variable blocks called Gain and Set Point. We can write the value 3 to
the Gain variable block and 20 to the Set Point variable block. Inside our loop, we
can then read these variables and take the output of the Read Variable block and
draw data wires into the Advanced Math block.

Chapter 8

[155]

The basic idea of the proportional algorithm is that the degree of correction needed
is proportional to the error. So when our measured value is far from our goal, a
large correction is applied. When our measured value is near our goal, only a small
correction is applied. The algorithm also allows overcorrections. If the robot moves
past the setpoint distance, it will back up. Depending on what you are trying to do,
you will need to play around with various values for the gain variable. If the gain
is too large, you will overshoot your goal and oscillate around it. If your gain is too
small, you will never reach your goal. The response time of the microprocessor also
affects the efficiency of the algorithm. You can experiment by inserting a Wait block
into the loop and see how this affects the behavior of the robot.

If we are merely using the distance sensor to approach a stationary object, then
the proportional algorithm will suffice. However, if you were trying to maintain
a given distance from a moving object (such as another robot), you might need
a more complicated algorithm such as a Proportional Integral Derivative (PID)
controller. Next we will build a line follower using the Color Sensor, which will
use a PID controller.

Line following using the Color Sensor
When we are using the Color Sensor in Reflected Light Intensity mode, the sensor
emits light and the robot measures the intensity of the reflected light. The brightness
of the red LED in the sensor is a constant, but the intensity of the reflection will
depend on the reflectivity of the surface, the angle of the sensor relative to the
surface, and the distance of the sensor from the surface. If you shine the sensor at a
surface, you will notice that a circle of light is generated. As you change the height of
the sensor, the diameter of this circle will change because the light emitted from the
LED diverges in a cone. As you increase the height, the size of the circle gets larger
and the reflected intensity gets smaller. You might think you want the sensor to be
as close as possible to the surface. Because there is a finite distance between the LED
and the photo diode (which collects the light) of about 5.5 mm, it puts a constraint
on the minimum diameter of your circle of light. Ideally, you want the circle of light
to have a diameter of about 11 mm, which means placing the sensor about half of a
centimeter above the tracking surface.

Because the height of the EV3 brick is different for each of the four robots I presented
in Chapter 3, Drive Train and Chassis, I will give you a design for attaching the Color
Sensor at the proper height for each of those robots.

Advanced Programming and Control

[156]

For the caster-bot, you will need the sensor, an axle, two bushings, two
long pins, a 5-mod beam, and two axle-pin connectors, as you can see in the
following screenshot:

Chapter 8

[157]

You can assemble the sensor attachment in two steps. The sensor attachment
settles into the holes in the caster attachment itself as you can see in the following
screenshot. This placement is ideal as it allows the caster to do the steering while
you do your line tracking.

You can build the Color Sensor attachment in four steps. The Color Sensor
attachment for the skid-bot will be the most complicated of our designs because
we want the sensor to be in front of the robot and the skid is quite long.

Advanced Programming and Control

[158]

Again, we will need the pins, axles, bushings, and axle-pin connectors seen in the
following screenshot:

Chapter 8

[159]

The Color Sensor attachment will connect directly to the EV3 brick. As you can see in
the following screenshot, the attachment will be inserted from below the brick:

Next I will describe the attachment for the tread-bot from the Educational kit.
Because the tread-bot is slightly higher off the ground, we need to use some pieces
such as the thin 1 x 4 mod lift arm that is a half mod in height. This extra millimeter
in height can make a huge difference in the signal strength. The pins have trouble
gripping the thin lift arm, so I like to use the pins with stop bushings to prevent the
lift arm from falling off.

Advanced Programming and Control

[160]

The Light Sensor attachment is once again inserted into the underside of the EV3
brick as you can see in the following screenshot:

The simplest of our Light Sensor attachments will be the tread-bot for the Home
Edition, and you can build this in one step.

Chapter 8

[161]

Similarly, it attaches to the underside of the EV3 brick.

Setpoint for line tracking
We first need to determine the desired setpoint of the Light Sensor reading for the
robot to track on. When using only one sensor, we don't want to track the middle of the
line because small changes in position will not be sensed. If we track along the edge of
a line, then a small change in position will substantially affect the size of the correction
error in our algorithm. In this case, 50 percent of the circle of red light will have a
high reflectivity and 50 percent will have a low reflectivity. Small deviations from the
edge will result in huge changes in the measured intensity. Placing the middle of the
circle of light exactly on the edge can be a challenge. Since we are trying to obtain a
numerical value, it is easier to separately measure the high reflection intensity and low
reflection intensity and find the average of those two values.

You will find that you will frequently determine a new setpoint value based on
your environmental conditions. In addition to the actual reflectivity of the surface
material, the ambient room light (including shadows) can also affect your setpoint
value. For all of our light tracking robots, you should have the Color Sensor plugged
into port 3 on your EV3 brick.

Advanced Programming and Control

[162]

In the following screenshot, you can see a program I have written that will allow
you to record the setpoint and save this to a file in the memory on the EV3 brick.
This is a calibration program, and other programs will read the calibration value
file later. This type of program can be very useful at robot competitions, where you
are allowed a limited amount of time to take a Color Sensor calibration reading on
the playing fields. The output of the Advanced Math block is connected by a wire
to the Write File block. Before we write to the file, we initialize the file by deleting
any information that may be there before with the Delete File block. After we have
written the information, we need to close the file using the Close File block. This
program takes a Light Sensor reading and saves it to the file light. By saving the
setpoint to a file, it saves us the need to either alter the program with the computer
or continuously enter a setpoint with the brick buttons.

Two-level or bang-bang controller
When we looked at the simplest of distance controllers, we simply used a Wait block
to tell the robot to stop. However, as we are tracking a line, our conditions relative to
the line are constantly changing as the line may move straight or curve. The simplest
controller is called a two-level or bang-bang controller. If the sensor measures
a reading greater than the setpoint, the robot will curve to the left. If the sensor
measures a reading less than the setpoint, the robot will drive to the right.

Chapter 8

[163]

When you execute the program in the following screenshot, you will notice that the
robot will follow a zigzag type of motion along the line:

In the program itself, you may notice that we read the value of the setpoint from the
Read File block. You can actually take data from an external source into the loop,
and this is shown with the splice in the wire at the edge of the loop. Alternatively,
you could store the information from the File block into a variable. Then the Variable
block could be placed inside of the loop. This saves the need to read from a file each
time the loop runs.

Inside the loop, you can see that we have a case structure. The case structure is
controlled by the reflected light intensity of the Color Sensor. If the reflected light
intensity is greater than the setpoint, then the motor plugged into port C drives
forward. If the reflected light intensity is less than the setpoint, then the motor
plugged into port B drives forward.

Using additional switch blocks, you could create a three-level controller where the
robot drives forward if it is very close to following the edge of the line. Even with this
improvement, however, the bang-bang controller lacks smoothness and efficiency.

Advanced Programming and Control

[164]

Proportional line follower
The proportional algorithm will make a correction to the motor speeds, which is
proportional to the magnitude of the error between the setpoint and the sensor
value. Each wheel has a given base speed, which we correct by either adding or
subtracting a factor proportional to the error. If the right wheel is faster, the robot
turns to the left. If the left wheel is faster, the robot will turn to the right. A critical
number for efficient line tracking is the proportional gain constant. If the gain is too
large, the robot will overcompensate for errors and wiggle back and forth. If the gain
is too small, the robot will have trouble following tighter curves.

Entering gain and speed
You could enter the gain and speed directly by reprogramming the robot. However,
to save ourselves time in adjusting the setpoint, gain, and speed of the robot, let's
first write two more programs to enter the speed and gain factors. The program in
the following screenshot will allow you to use the brick buttons to adjust the gain in
your program and store that information in a File block called Gain.

Chapter 8

[165]

The preceding screenshot has the Switch block in the tabbed view. The following
screenshot will show the Switch block in its expanded view:

Advanced Programming and Control

[166]

Similarly, we have another program to enter a speed for our robot. I find that when I
first build a robot and experiment with a line, I like to have the robot start out slowly
and then gradually increase values for the speed.

The preceding screenshot has the Switch block in the tabbed view. The following
screenshot will show the Switch block in its expanded view:

Chapter 8

[167]

Once we have our values for the gain, the setpoint, and the speed of our robot, the
proportional algorithm is rather straightforward. The program finds the difference
between the setpoint and the sensor. This error is adjusted by multiplying it with the
proportional gain constant, which is probably between 0 and 1. I suggest starting out
with a value of around 0.7. The result or correction is added to the base speed of one
motor and subtracted from the base speed of the other motor. It will take some trial
and error to determine the best speed and proportionality gain constants to make
your robot follow a line.

If you wanted to bypass using the File access blocks in the preceding program, you
could replace them with variable blocks and then change the program using your
computer as you experiment.

PID controller
One of the limitations of the proportional controller is that a value for the gain in
your program might be ideal for only one type of curve. For instance, the parameters
that work well for tracking a straight line might not work as well on sharp curves.
In some instances, the correction might not be strong enough, and in others, your
robot might overcorrect. The PID controller attempts to compensate for these
environmental variations.

We have already discussed the ideas behind the proportional controller. The strength
of the correction is proportional to the error of how far our sensor reading is from
the setpoint. If we are consistently having to include a large and consistent correction
(say we are always a bit too far off the edge of the line), then we must have needed
a stronger gain. The way to account for this on the fly is to have the robot remember
that it has been consistently off the line (or too far above/below the setpoint) for a
period of time and increase the correction. This is the integral controller portion of
the PID controller. In simplified mathematical terms, an integral means to add up
the values of a function or parameter over a given range. The integral controller adds
up the recent values of the errors and adds an additional correction to that of the
proportional controller.

Advanced Programming and Control

[168]

We also include a dampening term, so we do not remember too far back in time and
the influence of previous errors gets smaller after several iterations of the loop. In
the case of two robots (or cars) trying to maintain a given distance of separation, the
integral controller would tell the second robot if it has room to speed up, or if it has
been too close for too long and it needs to slow down even more.

However, if our corrections and our gain are too strong, we will approach the
setpoint too quickly and overshoot our goal. The derivative controller attempts
to prevent wobbling if things are happening too fast. In mathematical terms, the
derivative refers to the rate of change of a parameter, or how quickly a value is
changing, so if the error is decreasing (or increasing) too quickly, then the derivative
controller will step up and dampen the corrections. The derivative controller using
our distance sensors might prevent us from having a collision if the proportional and
integral terms are not slowing us down quickly enough.

In the following screenshot, I present a basic PID controller using the Color Sensor.
You can find more information on LEGO PID controllers on the blogs of Jim Sluka
(http://www.inpharmix.com/jps/PID_Controller_For_Lego_Mindstorms_
Robots.html) or Miguel Lardin (http://thetechnicgear.com/2014/03/howto-
create-line-following-robot-using-mindstorms/). Their controllers might
appear simpler as I have defined all six of my parameters using variable blocks in the
first row of the program. I try not to bury the variables inside of the math functions.
Although this makes the program longer and seemingly more complicated, this
simplifies the process of changing the values of these parameters. These parameters
include Speed, Gain, Set Point, K-Deriv, Dampen, and K-Integral. We have
mentioned Speed, Gain and Set Point before. The derivative constant, or K-Deriv, is
a multiplier to increase the strength of the derivative controller in our program. The
integral constant, or K-Integral, is a multiplier to increase the strength of the integral
controller in our program. Because our integral controller does not remember too
far back, we also include the Dampen constant, which needs to be a value between
0 and 1.

http://www.inpharmix.com/jps/PID_Controller_For_Lego_Mindstorms_Robots.html
http://www.inpharmix.com/jps/PID_Controller_For_Lego_Mindstorms_Robots.html
http://thetechnicgear.com/2014/03/howto-create-line-following-robot-using-mindstorms/
http://thetechnicgear.com/2014/03/howto-create-line-following-robot-using-mindstorms/

Chapter 8

[169]

In the second row of the program, I used several My Blocks to simplify the program.
The error My Block will calculate the error and the integral terms. You can see inside
of the error My Block in the following screenshot. We first calculate the value of the
error Variable block, which is the difference between the sensor reading and the
setpoint. Next we calculate the integral. The new value of the integral is the sum of
the error and the dampened value of the integral. Each iteration of the loop creates
a new integral value based on the old integral value and the new updated error.
The dampen constant has a compounding affect, so after a few iterations, the
memory of the old errors is trivial.

In the Deriv My Block, which we can see in the following screenshot, we calculate
the value of the Derivative Variable block. The derivative is the difference of the
current error and the error from the previous iteration, multiplied by the derivative
constant, K-Deriv. If this difference between the errors is zero, then there is no
derivative correction.

In the Correct My Block, which is in the following screenshot, we add together the
corrections due to these three controlling algorithms. We first add the derivative and
integral corrections together. Then we add in the proportional correction. Because
the Advanced Math blocks only allow four terms, we had to break this up into a
couple of steps.

Advanced Programming and Control

[170]

If you look on the right-hand side of the following screenshot, you will see that the
output from the second Math Block is connected by a wire to an output plug. This
allows the value of the summed correction to leave the Correct My Block as we saw
in the main program.

Returning to the main program, we use this summed correction to either increase
or decrease the motor speed of the driving wheels. We can see in the preceding
screenshot of the main program that a wire from the output plug of the Correct
My Block goes into the Math blocks. We finish the loop by storing the value of the
error variable block into the previous error variable block.

Once you have the program, the hardest part is determining good values for your
robot to follow its track. Similar to the simple proportional controller, you will find
that you may need different values for different tracks. A full explanation of the
mathematics behind tuning the constants in a PID controller is beyond the scope of
this text, but there are dozens of in-depth blogs and wiki pages on the subject. The
most common suggestion is to start with 0 values for the integral and derivative
controllers. You then increase your gain variable until the robots begin to oscillate.
Decrease your gain by about half and slowly add in the integral controller constant.
Once you have done this, you can tweak things as needed with the derivative
controller constant.

Gyro Sensor
In Chapter 4, Sensors and Control, when we introduced the Gyro Sensor, we wrote
a program that stopped the rotation of the robot when the Gyro Sensor reached
a certain value. As we noticed, the robot always overshot this value. In Chapter 7,
Advanced Programming, we tried to compensate for the overshooting with a two-level
controller. Here we show a program where the measurement from the Gyro Sensor
goes into a proportional controller.

Chapter 8

[171]

You will find that this method is significantly more precise and useful in making
exact turns.

The preceding program asks the robot to rotate through a given angle and slow to a
stop. If we used a smaller gain constant, we could avoid using a loop. However, this
can take more time and runs the risk of never reaching your setpoint. This is similar
to approaching a set distance from a wall using the motion or proximity sensors.
Again, we start out by resetting the Gyro.

A more interesting use of the Gyro Sensor will be to drive in a straight line under
constantly changing conditions. This algorithm is akin to line tracking along a
curving line. Suppose you are attempting to drive straight while pushing an object
(such as a LEGO car or truck with wheels). There will be a lot of friction, which will
easily push your robot off course. The following program will allow the robot to
constantly correct itself, so it maintains a course direction given by the Gyro.

We begin the program by defining values for our speed, gain, and set point variable
blocks. Inside of the loop, the second line of our program calculates a proportional
correction to how far off the robot is from the setpoint angle. We then add this
correction to one wheel and subtract from the other wheel. Notice that to reduce
the number of blocks in this case, I used a Move Tank block with each correction
connected to a different wheel. In a Move Tank block, the power level for each wheel
has its own input plug.

Advanced Programming and Control

[172]

In a Move Steering block, there is one input plug for power and one input plug
for direction.

If the robot is not pushing a load, you will find it drives straight easily. As it drives,
give it a push and you will find it will correct its course.

IR sensor navigation and beacon tracking
One of the simplest uses of the IR sensor and the IR beacon is to have the robot seek
out the beacon. The program to have the robot seek the beacon is simple and again
uses a proportional controller. The sensor block values of heading for the beacon
range from -25 to 25. In the following program, my correction is going into the
steering plug of a Move Steering block. Since the steering input values of the Move
Steering block range from -100 to 100, you want to have a gain of 4 in the program.
Make sure your beacon is set to the same channel as your sensor block, which in this
case is channel 1.

Chapter 8

[173]

If your robot turns in the wrong direction, you can either swap which cable the
motors are connected to or change the gain constant to -4.

Navigating a field with the IR sensor and the beacon may not be as obvious as using
the Ultrasonic motion sensor and the Gyro Sensor. However, if you read about
approach paths used in aviation using non-directional beacons, a Gyro, and distance
measuring devices, you will find that you can come up with incredibly sophisticated
navigation programs.

Tracking a circle
Using the beacon and the IR sensor, you can program your robot to drive in a circle
while maintaining a constant radius relative to the beacon. To do this, the IR sensor
should be mounted on the robot pointed to the side as shown in the following
screenshot. The robot should be set up to drive a circumference of a circle.

Advanced Programming and Control

[174]

Remember, the IR beacon has a limited cone of emission, so you will need to start
the robot within about a 45 degree cone of the front of the beacon. This program will
work better for larger distances (more than a meter). Your gain constant values will
vary depending on the type of robot you use. If you were to set the beacon standing
on its end, you can actually track a wider circle. However, the radius will be smaller
when the robot travels around the back of the beacon since there is opaque plastic
blocking some of the signal. To do this, you should use a smaller radius of about half
a meter. The program starts out by sending the proximity to the beacon value of the
IR sensor block to the Set Point Variable block. This is used as a proportional control
for the robot within the Loop. Pilots call this type of navigation flying a Distance
Measuring Equipment (DME) arc.

Triangulation
In aviation, pilots can use two non-directional beacons to triangulate their position.
The instrument that tells us the heading of the beacons on an airplane is called the
Automatic Direction Finder (ADF). If you have two IR beacons, you can do a similar
thing with just one IR sensor mounted on your robot. One disadvantage of the heading
indicator from the beacon is that the values are not in the degrees that the Gyro Sensor
uses. Still, with some effort you can use two beacons to do some basic triangulation.

In the following program, we use two IR beacons. Each beacon is set to a different
channel. Set the first beacon to channel 1. Set the second beacon to channel 2. The
IR sensor should be on the front of your robot. Choose a location that you want the
robot to navigate back to and place your robot at that point. It is helpful to angle
the beacons towards the robot. When you run the program, the robot will first turn
towards beacon 1 and take a proximity measurement. Then the robot will turn
towards beacon 2 and take a proximity measurement.

Chapter 8

[175]

The value of the proximity measurement can change with the heading of the robot,
so you do need to have the robot pointed straight towards the beacon for reproducible
results. After you have done this, the robot can be moved to another location. After a
brick button is pushed, the robot will navigate back to its original position.

Since this is a complex program, we will use My Blocks to make it easier to follow.
In the preceding screenshot, you can see the first two My Blocks, IRB1 and IRB2,
which will record the proximity measurements of the two beacons. The robot then
waits for a brick button to signal that it has been repositioned. We then enter a loop
where My Block Seek1 commands the robot to turn towards beacon 1, and then
move toward it. Although we do not know the exact location of the robot, we know
it is on a circular arc near beacon 1. Next, in My Block Seek2, the robot turns towards
beacon 2 and then moves towards beacon 2. This loop repeats itself four times, which
should be enough to reach the original location.

Let's now examine the program inside each of the My Blocks that will record the
proximity measurements of the beacons.

Advanced Programming and Control

[176]

In the preceding screenshot, we can see the program inside of My Block IRB1.
The robot begins by turning towards the infrared beacon, which is set for channel 1.
The robot only turns and does not move towards the beacon. The loop stops when
the robot is facing the beacon. The robot will then pause (to make sure there is no
motion) and store the proximity value from the Infrared Sensor to the Variable block
Distance1. The robot will announce with the speaker that it has detected the first
beacon. In the following screenshot, we can see a similar program inside of My Block
IRB2. The main difference is that the sensor block is set to channel 2, and the value is
stored to the variable Distance2.

We will now examine the program inside each seek My Block that will navigate the
robot back to the original position.

Chapter 8

[177]

As we can see in the preceding screenshot, our Seek1 My Block begins with a loop,
which is similar to the previous My Blocks. The robot starts out by turning towards
the beacon. When it is facing the beacon, the robot pauses to allow it to come to a
complete stop. The robot will then move forwards (or backwards) proportionally
to the error between the proximity value of the Infrared Sensor and the distance
Variable block. In the following screenshot, you can see the Seek2 My Block.
The only difference is the channel for the sensor block and the Variable block.

If you were to combine the information of the Gyro Sensor and the Infrared sensor,
you would have an even more powerful tool to navigate a course. The Gyro Sensor
would allow you to know along which radial your robot is positioned relative to
the beacon.

Summary
In this chapter, we explored advanced methods of navigations. We used both the
Ultrasonic Sensor and the Infrared sensor to measure distance with a proportional
algorithm. We used the Color Sensor with a two-level, proportional, and PID
algorithm. We used the Gyro Sensor for a proportional algorithm and course
corrections. Finally, we used the IR sensor with the IR beacon to navigate with
several advanced techniques.

In the next chapter, you will learn about data logging and recording experimental
work using the graphing features of the Educational Edition of the software.

Experiment Software and
Data Logging

In this chapter, you will learn how to use the data logging features of the LEGO
MINDSTORMS Educational Edition software. You will:

•	 Learn how to autonomously collect data
•	 Learn how to graph data to analyze our robot's performance
•	 Improve dead reckoning
•	 Analyze gain constants
•	 Learn how to write graphical programs

Graphical programs are different from the block and wire-based programming we
have engaged in so far.

Data logging software
There are four major differences between the Home and Educational Editions of the
LEGO MINDSTORMS EV3 software, which are as follows.

•	 Cost: You can download the Home Edition of the Software for free, whereas
a single license of the Education Edition of the software is about $100 and a
site license is about $400.

•	 Appearance: The Home Edition has a lobby or splash page, which is
reminiscent of a Hollywood robot invasion movie, which is not found in the
Educational Edition.

Experiment Software and Data Logging

[180]

•	 Sensor blocks: The Home Edition does not include sensor blocks for the
Gyro Sensor or the Ultrasonic motion sensor, but these can be downloaded
and imported.

•	 Data logging: The most significant difference is the data logging features of
the Educational Edition. The data logging is so distinct and different that I
would almost qualify it as a different piece of software.

What good is the data logging software? If you are an elementary or middle school
teacher, data logging can easily be a great tool. Data logging allows your EV3 to
gather and display sensor data in real time on the computer screen as an oscilloscope
would at an impressive rate of 1000 Hz. This could be a great boon to your classroom
if you do not have any other data acquisition tools. The robot can be programmed to
autonomously gather data, and can be later uploaded to the computer for analysis.
The analysis features of the software will calculate the average values, derivatives,
and integrals of your graph and allow simple curve fits to calculate the equation of
the line. You can also write very simple computer programs that control the robot
based on values on a graph, which is called graphical programming.

Many high school teachers may already have more advanced data acquisition
systems, and might find the data logging of the EV3 software rather limiting. The
1000 Hz can be limiting if you are interested in high frequency sounds or electrical
signals. Although the software will generate nice graphs of sensor data as a function
of time, you cannot make x-y sensor graphs. For example, you could not graph the
Gyro Sensor on your y axis, and your motor rotation encoder on the x axis. The
graphical analysis curve fitting will allow you to perform linear, quadratic, and cubic
curve fits of your sensor data. The linear and quadratic curve fits are useful, but as a
teacher I would rather see exponential or trigonometric curve fits than a cubic fit.

The official EV3 help tutorials do a satisfactory job of showing you how to gather
sensor data if you are performing science experiments. In the rest of this chapter, I
will move beyond the elementary tutorials and focus on how you can use the data
logging software to analyze and improve the performance of the robots we have
built in this book.

Improving dead reckoning
In this next section, we will use autonomous data logging to collect sensor data,
which we will graph and then analyze to improve our dead reckoning skills. Because
the Gyro Sensor is so susceptible to drift, I know many FIRST LEGO League (FLL)
teams who still prefer to use dead reckoning to navigate a course. Reconciling the
amount of turning in dead reckoning with the values of the Motor Rotation sensors
can be tedious and time consuming.

Chapter 9

[181]

Data logging allows us to directly compare the values of the Gyro Sensor to the
values of the Motor Rotation sensors over a period of time.

Let's begin by attaching a Gyro Sensor to port 2 on our robot. For the graphs in this
chapter, I attached the Gyro Sensor to the caster-bot, but you can do this with any of
our robots. In the following screenshot, you can see a simple program to acquire and
store data from the sensors:

In the following steps, I will describe the program in the preceding screenshot:

1.	 We start out by using sensor blocks to reset the values of the Gyro and both
Motor Rotation sensors.

2.	 We will now add a Data Logging block to our program. When you first add
a Data Logging block, it is only set up to collect data for one sensor.

3.	 By pressing the plus sign in the upper right-hand corner of the block, you
can add additional sensors. We will collect data at a rate of 100 Hertz
or 100 points per second.

4.	 Make sure the Gyro Sensor is set for port 2, and the Motor Rotation sensors
are set for ports B and C.

5.	 Lastly, you need to name the data file to which we will store the data. In this
case, I will name the file Gyro.

6.	 Next, we will add in a Motor block to move the robot about half a turn.
7.	 At the end of our program, we want to tell our robot to stop collecting data

and close the file with a Data Logging block set to Stop.

After we have downloaded and executed the preceding program, our robot should
have turned and collected sensor data into a stored file called Gyro. We will now
upload and analyze this data. Unfortunately, the data logging software will not
allow us to graph the value of the rotation sensor as a function of the Gyro Sensor.
The graphing software will graph them both as a function of time. We can then do a
calculation to find the relative increase in both values.

Instead of starting a new program, we will start a new experiment. When you first
start an experiment, the software defaults to the Oscilloscope mode and will graph
the values of the attached sensors in real time.

Experiment Software and Data Logging

[182]

We will not be using the Oscilloscope mode in this book, so you can click on the Stop
Oscilloscope Mode button as we can see in the following screenshot:

Another important difference between an EV3 program and an EV3 experiment
can be found in the lower right-hand corner of the hardware page as shown in
the following screenshot. The download buttons are the same in the program and
experiment software. However, the EV3 experiment has an Upload button, which
allows us to upload a data file from the EV3 brick and import the file into the data
logging software.

After you select the upload button, we can import a data file from the EV3 brick,
the SD card, or your computer. You want to select the desired dataset and press the
Import button. As you can see in the following screenshot, if we run our program
several times, the name of the file is appended with a version number so that the
data is not rewritten over each time you run the program.

Chapter 9

[183]

If you are unsure of which version of data you want to import, there is a timestamp
and a preview of the graph is shown in the window before you click on Import.

After you import the data file, you will see a graph of the data as in the following
screenshot. By default, each type of sensor is graphed in its own color, which we can
change later. For instance, both rotation sensors are of the same color, which makes
it difficult to differentiate between them. Also, by default, the individual data points
are not shown, only the lines between the points are. We will also want to scale the
axes of our graph, so we do not have wasted space in the graph.

Experiment Software and Data Logging

[184]

There are four data logging tabs in the lower left-hand corner of the screen.
By clicking on the Dataset Table tab, you are shown each dataset. There is a scroll bar
underneath the dataset values, and by scrolling to the right, you can see the values for
all the collected data. If you are accustomed to using a conventional vertically-based
spreadsheet, it might be a bit awkward to scroll left and right to search through a list
of values. Fortunately, you can export the data in a .CSV format by navigating to
Tools | Export Datasets if you want to use your own spreadsheet software.

By clicking on the Color and Plot Style button (which, by default, is a forward slash),
the Color and Plot Style window will pop up. This allows us to change the color of
an individual dataset. We can also display the individual data points with circles,
squares, and crosses. If you have a limited number of data points in the time period
shown, this can work fine; otherwise, the icons will blur together making a thick line.

Chapter 9

[185]

By clicking on the axes values, I can manually rescale the axes. In the following
screenshot, I chose to redisplay time from 0 to 5 seconds. I kept the Gyro Sensor the
same, but redisplayed the Motor Rotation sensors from -500 to 500 degrees. A lack of
symmetry in the axes will cause an offset in the zero point of the graph. In this graph,
we can see that the rotation sensor connected to port B is constantly increasing in
a negative direction, whereas the other rotation sensor and the Gyro Sensor are
constantly increasing in a positive direction.

In the preceding screenshot, we can clearly see how the Gyro Sensor values
and Motor Rotation sensor values are proportional to each other. If we want to
numerically determine the constant of proportionality, we will need to calculate a
new dataset. By clicking on the Dataset Calculation tab of the data logging tabs, you
can calculate and create a new dataset based on any previously created datasets.
There is a wealth of mathematical functions available from simple arithmetic
functions to trigonometry, logarithms, and calculus. The ease of use is a significant
strength of the software. In our case, we are interested in finding the constant of
proportionality between the Gyro Sensor values and the motor rotation values. By
clicking on the appropriate datasets, you can divide the Gyro Sensor dataset by the
port C rotation sensor dataset to create a new calculated dataset.

Experiment Software and Data Logging

[186]

You can see in the following screenshot that Calculated_Dataset is
Gyro_p2_01/ Rotation_pC_01:

After creating the calculated dataset, it is graphed in our graphing window.
If we look at the following screenshot, we can see the new calculated dataset,
which approaches an asymptotic value of 0.35 after about half a second. During the
first quarter of a second, we can see that there is no reliable relationship between
the Gyro Sensor and motor sensor value, but after 1 second, the calculated dataset is
constant. What this tells us in terms of dead reckoning is that for larger turns we can
accurately predict the degree of turn using the rotation sensor, but for turns of less
than 10 degrees, we do not have a reliable linear relationship to work with.

Chapter 9

[187]

We can be more explicit if we use the analysis tool. By navigating to Analysis |
Section Analysis we are presented with information on the region of interest.
Specifically, the mean value of our calculated dataset is 0.35. In order to determine
our angle of rotation using dead reckoning, we can multiply the Motor Rotation
sensor by 0.35. This works effectively for any angle greater than 10 degrees.

Although, by traditional discrete methods you probably could have determined this
proportionality constant, the data logging software has enabled us to quantitatively
know when this constant is reliable.

Analyzing gain constants
In the previous chapter, we discussed proportional and PID control algorithms.
When it was time to determine the best gain, derivative, and integral constants, we
largely left things up to trial and error. Patient use of data logging would allow us to
quantitatively analyze the quality of various values of these constants. This would be
particularly useful in line tracking as we can graph the error function and corrections
as a function of time, and compare this to the location along the line being tracked
(and the degree of curvature at that point).

Experiment Software and Data Logging

[188]

In the following program, we are going to analyze the performance of a simple
proportional line tracker similar to the one we used in Chapter 8, Advanced
Programming and Control. After resetting the motor rotation sensors, we use a Data
Logging block to record values from the Color Sensor and the Motor Rotation
sensors. We are recording the Reflected Light Intensity of the Color Sensor, which is
plugged into port 3. Instead of recording the positions of the Motor Rotation sensors,
we are measuring the current power values of the Motor sensors. The reason for this
is we are curious as to how hard the motors are working to correct the errors. We
want to monitor these values because they are the output of the PID controller.

The graph in the following screenshot is an example of data from the preceding
program. The Light Sensor values are marked with crosses. The motor current and
power values are marked with circles and squares respectively. As you can see,
the values of the motor currents are always opposite of a constant value of about
-20 percent. In the following screenshot, the rate of data acquisition is at 10 Hz, but
by increasing the data rate, you will have smoother curves. I won't spend much
time analyzing this particular graph, but I present this as an example of how you
could quantitatively observe the affects of changing gain parameters as opposed to
qualitatively observing the affects of changing gain parameters on the motion of
the robot.

Chapter 9

[189]

With full PID control, this type of analysis would be even more valuable.

Graphical programming
The graphical programming features allow you to write simple programs based
on sensor (or calculated) values on a graph. Unfortunately, you are limited to only
the Action blocks, which include controlling the motors, the brick display, the brick
lights, and the speaker. Again, the EV3 tutorials do a satisfactory job of explaining
some elementary uses of the graphical programming. For instance, LEGO describes
how to use the value of the temperature sensor to control a fan. One particular use
of the graphical programming, which I like, is to program a three-level bang-bang
controller. With the normal EV3 programs, this takes a few additional steps, but is
rather straightforward with graphical programming. This also makes the concept
of a setpoint and a bang-bang controller easy to understand for the most novice
of students.

Experiment Software and Data Logging

[190]

In the following screenshot, we see a graphical program using Reflected Light
Intensity from our Color Sensor. The graph is broken into three regions. When the
sensor reading is in the star zone, or the value is above 42, it executes the blocks in
the star zone programming panel. When the sensor reading is below 38, the circle
zone, it executes the blocks in the circle zone programming panel. Between the two
values is the rectangle zone, which has its own set of commands. As the program
runs, the value of the sensor is displayed on the graph.

Chapter 9

[191]

In the following screenshot, we have the programming panels for each of the
three zones, the star, the rectangle, and the circle zones. In the star zone, the robot
turns left onto the line. In the circle zone, the robot turns right off of the line. In the
rectangle zone, the robot drives straight. You may find that it can be challenging to
program the setpoints for the zones very close to each other. To view the results on
a graph, you will have to rescale the y axis of your graph. In addition to the viewing,
the robot will struggle to maintain a narrow range of values at high speeds and may
oscillate around the rectangle zone.

Experiment Software and Data Logging

[192]

Other bang-bang controllers
In the following graphical program, instead of the Color Sensor, a Gyro Sensor is
used to control the zones. One major difference you may notice is the discreteness of
this graph. This is because the Gyro Sensor readings are not continuous but are only
measured to the nearest degree. In this case, I spaced the circle and star zones two
degrees apart. From the graph, you can see that the robot started to oscillate around
the rectangular zone, but eventually settled down.

In this graphical program, as you can see from the programming panels in the
following screenshot, the robot is attempting to drive at a given angle. In the star
zone, the robot will turn to the right, in the circle zone it will turn to the left, and in
the rectangular zone it will drive straight. Another distinct advantage of using a
graphical program is the trouble with negative numbers. From the default position of
zero degrees, if a robot turns to the left, the Gyro Sensor will present a negative value.
Using the traditional programming methods, it can be tricky to eliminate errors
due to negative numbers in your program. Traditionally, you would use a Switch
block determined by the sensor value being above or below the setpoint. When
your setpoint is negative, you need to account for this in your programming. With
graphical programming, you do not have to worry if your setpoint is negative.

Chapter 9

[193]

In another example of graphical programming, I used the Infrared Sensor detecting
a heading to the beacon. If you want the robot to move towards the beacon, you can
write a simple program where the rectangular zone is centered around a heading of
zero. Again, after some initial overshoot, you can see that the robot settles into the
rectangular zone.

Experiment Software and Data Logging

[194]

Summary
In this chapter, you learned how to use the data logging features of the EV3 software.
You learned how to quantitatively improve your dead reckoning skills using data
logging. You also learned how you would analyze the proportional gain constants
by looking at graphs of the sensor values. Lastly, you learned how to write simple
three-level controllers using graphical programming.

In the next chapter, we will explore other programming languages for the
EV3 hardware.

Other Programming
Languages

There are numerous programming languages that we can use with EV3. Two of the
most popular are LabVIEW and RobotC. This is due in large part because of the
student robotics competitions such as For Inspiration and Recognition of Science
and Technology (FIRST) robotics, where both LabVIEW and RobotC are approved
languages. Both of these programming languages must be purchased but do allow a
higher level of programming than the EV3 LEGO MINDSTORMS language, which is
written by LEGO and National Instruments. The more serious EV3 enthusiasts will
do their programming in leJOS (Java), MonoBrick (.NET languages—C#, VB, F#),
or ev3dev (which allows you to use Python, C, C++, and numerous others). In this
chapter, we will have a brief overview of LabVIEW and RobotC. We will cover the
following topics:

•	 The LabVIEW language, which includes:
°° Front Panel and Block Diagrams
°° Programming blocks
°° Robot tools
°° SubVIS

•	 The RobotC language, which includes:

°° Commands
°° Remote control
°° Graphical programming

Other Programming Languages

[196]

LabVIEW
LabVIEW is a higher-level programming language used widely in science and
engineering. LabVIEW is made by National Instruments, who, with LEGO, created
both EV3 and its immediate predecessor, NXT. The entire EV3 LEGO MINDSTORMS
software is based on LabVIEW and is meant to be a kid-friendly version of the more
advanced software. There are middle schools, which have LabVIEW integrated into
their curriculum so that the learning curve is not that high. You can find copies of the
student edition of LabVIEW for under $50, which is a bargain compared to the full
professional edition that is over $1,000! For this chapter, I used the 2014 version of
LabVIEW with the LEGO MINDSTORMS add-on modules. LabVIEW works fine on
both Macs and PCs. The EV3 add-ons were released in the fall of 2014. At the time of
writing this book, not all of the NXT features were fully updated for EV3.

When you first start a robot project in LabVIEW you use the Schematic Editor to
assign the EV3 ports to your sensors and motors. In the following screenshot, you
can see how I have assigned the motors to ports B and C, a Touch Sensor to port 1,
an Ultrasonic Sensor to port 2, and a Color Sensor to port 3. On the left-hand side in
the following screenshot, you can see controls to use the Schematic Editor to make
individual motors move a certain amount. I have found this very useful in making
sure that the mechanical aspects of my robot are solid without worrying about
the programming.

Chapter 10

[197]

You can also get feedback from the sensors. In the preceding screenshot, you can see
how the values for the motor encoders are displayed. You can actually assign names
to the motors, instead of calling them by the default names such as Large Motor 1.
In the following screenshot, the Schematic Editor is focusing on the Ultrasonic
Sensor. You can see a graph of the distance measurements coming back from the
Ultrasonic Sensor.

The Schematic Editor is similar to the Port View in the EV3 MINDSTORMS software.
In the upper right-hand corner, you may notice a pull-down menu that says Master.
In Chapter 11, Communication Between Robots, we will discuss how to allow EV3 bricks
to communicate in what is called a master-slave function. The Schematic Editor
allows you to assign all of the sensors for each brick you have, which is not possible
in the EV3 MINDSTORMS software.

Front Panel and Block Diagram
Programs in LabVIEW are called Virtual Instruments (VIs). When I think back
to my early days in electronics, I remember buying Heathkits. You would solder
dozens of resistors, capacitors, and transistors onto circuit boards. You would then
control your electronics project with potentiometers connected to knobs and dials on
the outside of your black box. Today, the Heathkit has been replaced with Arduino
and other Do It Yourself electronics kits. Mistakes can take a long time to fix. If you
use the wrong resistor, it takes a while to desolder and reconnect a new component.

Other Programming Languages

[198]

LabVIEW is used as a virtual electronics black box. In the Block Diagram, you wire
together all of your electronic components. On the Front Panel, you have your dials,
knobs, meters, and gauges.

In the preceding screenshot, I have written a simple program in LabVIEW, which
will move the robot forward for 5 seconds, and then stop. In the Block Diagram,
which is on the bottom half of the screenshot, you can see three blocks. There is a
Power block, a Wait for Time block, and a Brake block. These three blocks are wired
together with a thick wire that dictates the flow of the program, quite similar to the
EV3 LEGO MINDSTORMS software. Data wires connect two control blocks to the
Power and Wait blocks. These control blocks accept values from the settings on the
Front Panel, which are labeled Power/Speed 1 and Time.

Chapter 10

[199]

Programming blocks
LabVIEW is a huge programming language with hundreds of programming
blocks. The LEGO MINDSTORMS add-on module tries to simplify things by only
presenting the most used blocks. In the following screenshot, you can see several
I/O programming block categories. These blocks control the motors, sensors, and
perform data logging, display, and Bluetooth functions. You can already see the
similarities to the EV3 LEGO MINDSTORMS software.

The programming blocks used to manipulate data in your EV3 programs are quite
extensive, as you can see in the following screenshot. Again, the total number of
loops and data types in the menu has been trimmed to the most used programming
blocks. An advanced user can certainly bring in other blocks.

Other Programming Languages

[200]

Delving deeper into the hierarchy of programming blocks, if we look at the
Structures category in the following screenshot, we can see more than just the
simple loop and switch blocks we have in the EV3 LEGO MINDSTORMS software.

Learning to combine all of these programming blocks can be a bit daunting. To help
you do this, LabVIEW has a menu of preprogramming VIs of some very common
robot maneuvers, which they call Behaviors. Each block in the following screenshot
is actually a full VI with several programming blocks inside of it. You can modify
those blocks or use them directly in your own programs.

Loops
In the following screenshot is a small VI that will display motion sensor readings
onto the EV3 brick display. We have a for loop, which will repeat for 10 iterations.
The first programming block is a Read Ultrasonic block, which is measuring in
centimeters and taking data from port 2. A flow wire and a data wire connect to the
drawNumber block, which displays the distance measurement on the screen of EV3.
The flow wire next leads into a Wait for Time block that waits for 1 second. The last
block inside the loop is another drawNumber block. The input of this block is actually
the index of the iteration of the loop. The constant 3 above the drawNumber block
lowers this to the third line of text on the screen.

Chapter 10

[201]

Although they look like simple programming blocks, in truth, all of the blocks in the
preceding screenshot are actually VIs (or LabVIEW programs) of themselves.

Line following VI
We will now look in depth at one of the Behavior VIs we saw previously, the
line following VI. You will notice that the line following VI uses several numeric
functions. In the following screenshot, you may recognize that many of these
numeric functions look like the traditional programming flow charts that you may
have seen in an elementary computer programming class. Much of the logic behind
LabVIEW is based on the flow chart concept.

Other Programming Languages

[202]

The line following VI will use the Add, Subtract and Multiply functions from the
preceding menu. When you look at the line following VI in the following screenshot,
the first thing you will notice is the while loop. As opposed to the for loop that runs
for a certain number of iterations, the while loop continued indefinitely as long as
the Enter Button is not pushed on the brick. Instead of assigning a setpoint value to
track along, the user needs to begin by placing the robot on the edge of the tracking
line. As you can see mentioned in the comment field, before the loop begins, an
initial measurement is made by the Read Color Sensor block. A data wire connects
the value read from this initial measurement as the setpoint and finds the difference
to color sensor readings, which are made inside of the while loop. This difference or
error is multiplied by the gain, which in the following program is approximately 0.3
to produce a correction.

This correction is then either subtracted or added to the speed of the left and right
wheels respectively. A delay of 30 milliseconds is added to the while loop so that
doesn't run too fast. You will find that the LabVIEW code does run more efficiently
than the EV3 language. After the while loop is broken, the robot comes to a halt.

Chapter 10

[203]

Robot tools
Some nice features in the EV3 LEGO MINDSTORMS software are the Image Editor,
the Sound Editor, and the Data Logger. Those editors in LabVIEW are even better.
The Image Editor in LabVIEW allows you to upload a wider variety of image files.
The Sound Editor likewise has more abilities. One built-in example is the following
Piano Player tool, which you can see in the following screenshot:

Data
As we saw in Chapter 9, Experiment Software and Data Logging, the Data Logger in
the EV3 LEGO MINDSTORMS software had many great features. I was always
frustrated that I could not graph one sensor value as a function of another sensor
value on the same graph. Additionally, all you can really do with the data is make a
graph. With LabVIEW, you can save the sensor data as a .dat file. This allows you to
import the data at a later time to control your robot!

Other Programming Languages

[204]

In the following screenshot, you can see a VI that takes a series of data from the
Ultrasonic Sensor and writes it to a file. Another frustration is that in the EV3 LEGO
MINDSTORMS software, you can only write one datum to a file. In the following
screenshot, we see a for loop that runs for 200 iterations. The VI begins with a Start
Data File block. This block creates a data file called SonicData.dat, and prepares it
to accept distance values. The Read Ultrasonic block inside of the loop is connected
by a flow wire and a data wire to the Add Data Point block. This block appends a
single datum to the data file. The loop pauses 25 milliseconds between iterations.
A third wire at the top sends a string with the name of the file. After the loop has
terminated, the flow wires lead us to a Close Data File block.

Chapter 10

[205]

Similar to the Data Logger in the EV3 LEGO MINDSTORMS software, we have a
Data Viewer in LabVIEW that allows us to make a graph of our values, as you can
see in the following screenshot:

If you wanted to, you could even place a copy of this graph on display on the Front
Panel of your program.

Other Programming Languages

[206]

Front Panel and clean Block Diagrams
There is actually a wide variety of buttons, knobs, and sliders you can use to control
the variables and constants in your VI. In the following screenshot, I have chosen a
knob, two sliders, and a dial. For the current settings on the Front Panel, this VI will
program the robot to move forward, pause, and then turn.

Chapter 10

[207]

In the following screenshot, you can see the Block Diagram, which accompanies
the previous Front Panel. The Block Diagram is actually a disorganized mess,
which includes a broken or disconnected wire. One nice feature of LabVIEW is
that with a few simple commands it will remove broken wires and clean up your
Block Diagram.

Other Programming Languages

[208]

The following screenshot is much easier to understand compared to the disorganized
mess that you saw earlier. The VI begins with the Move Motor block, which is
controlled by the knob on the Front Panel. The Wait for Time block is controlled
by the slider on the Front Panel. After braking, the next Wait for Time block is
controlled by a dial. Next, you can see that the flow of the program splits as each
motor is controlled separately allowing a coordinated turn. The motor slider on
the Front Panel sends its positive value to one motor, and a negative value to the
other motor.

SubVIs
The concept of the My Block is based on the SubVI from LabVIEW. In the following
screenshot, we can see a development of the program we used earlier in the Line
following VI section. However, the program is quite large and difficult to view. Thus,
we need to develop a hierarchy for the program by using a SubVI. We will make the
entire right half of the following VI into a SubVI:

Chapter 10

[209]

Now when we look at the program it is easy to follow. The robot moves forward at
75 percent power until it is within 40 centimeters of a barrier. It then stops for two
seconds to prepare to track a line.

Other Programming Languages

[210]

Just like My Block, if you click on the SubVI, it will open up and you can look deeper
into the hierarchy, which is what I have done in the following screenshot:

You will find that LabVIEW is used widely throughout the fields of science and
engineering. Learning LabVIEW is a valuable skill in stem fields. However, at
professional robotics companies, most programming is done with line code.

RobotC
RobotC is a product of Robomatter Inc., a spin off from Carnegie Mellon University
and is widely used in the FIRST and VEX robotics competitions. In many ways, it
is very similar to the traditional line code you may already know, with numerous
added commands and functions to control robots. It is relatively inexpensive (less
than $100), but the curriculum that accompanies it will double your cost. RobotC has
evolved over the years and now has a Robot Virtual Worlds where you can program
a virtual robot and try out your programs without waiting to complete the physical
device (for more money, of course!). For younger students or those who are new to
line code programming, there is also a graphical version of RobotC, which visually
reminds me of Scratch. RobotC 4.0 for LEGO MINDSTORMS was released in the fall
of 2014. At the time I wrote this book, I found that many of the commands, sample
programs, and documents were not fully updated from the NXT MINDSTORMS
to EV3.

Chapter 10

[211]

When writing a program in RobotC, similar to LabVIEW, we begin by assigning
the motor and sensor ports as we can see in the following screenshot. Although you
might think of RobotC as text-based, we begin with a great Graphical User Interface
(GUI) to set up the motors.

We can name the motors and assign sides, which is useful for a drive train. One of
the features in this book that I particularly appreciate for the design of the robots
is the ability to reverse all power signals that go to the motor. We will do the same
for our sensors as you can see in the following screenshot. Being able to name the
sensors is useful if you have more than one sensor of the same type and want to
differentiate them in your code.

Other Programming Languages

[212]

Next, we will work directly with the bricks to enable communication between
the robots.

Simple code
You need to configure the sensors and motors in your RobotC program. Fortunately,
the motor and sensor GUI generates the configuration line code for us as we can see
in the following screenshot:

Beyond the configuration lines at the beginning of our program, if you know C,
you should be able to follow this program:

#pragma config(Sensor, S1, Reflectivity, sensorEV3_Color)
#pragma config(Motor,motorB,LeftMotor,tmotorEV3_Large, PIDControl,
 reversed, driveLeft, encoder)
#pragma config(Motor, motorC, RightMotor,tmotorEV3_Large,
 PIDControl, reversed, driveRight, encoder)
//*!!Code automatically generated by'ROBOTC'configuration wizard!!*//

task main()
{
 setMotorSpeed(LeftMotor, 30);
 //Set motor power at 30%
 setMotorSpeed(RightMotor, 30);
 sleep(3000);

Chapter 10

[213]

 //Wait 3000 mS or 3 seconds before moving on
 setMotorSpeed(LeftMotor, -30);
 //turn the wheels in different directions so the robot turns
 setMotorSpeed(RightMotor, 30);
 sleep(2000);
 setMotorSpeed(LeftMotor, 30);
 setMotorSpeed(RightMotor, 30);
 sleep(4000);
}

In the preceding program, there are many new commands that are unique to RobotC
such as setMotorSpeed and sleep. Fortunately, you do not need to memorize these
commands. RobotC allows you to graphically drag these commands into your code
as you can see in the following screenshot:

You literally click on the word sleep(nMsec) with your mouse and drag it into your
program. You then adjust the time parameter, which is measured in milliseconds.
Similarly, in the following screenshot I have dragged the setMotor command:

You then adjust the parameters with the name you gave each motor and the
percentage of power.

Other Programming Languages

[214]

Commands
Most of the common control structures you find in C are actually in the graphical
toolbars to make it easier to drag commands into your program. In the following
screenshot, you can see the list of Control Structures that can be dragged into
your program:

Chapter 10

[215]

In the following screenshot are examples of many of the motor commands:

Similar to LabVIEW, many of the common behaviors have been written as
commands, which can be incorporated into your larger programs. In the preceding
screenshot, one behavior you can see is Line Tracking. The line tracking function is
essentially a bang-bang or two-speed controller. The four parameters are the sensor
name, the setpoint (threshold), and the speeds of the leading and trailing motors.
In the following program, you can see this function being used. Again, the program
begins with configuring the sensors before entering the main part of the program:

#pragma config(Sensor, S3, colorSensor, sensorEV3_Color)
#pragma config(Motor, motorB,rightMotor, tmotorEV3_Large,
 PIDControl, reversed, driveRight, encoder)
#pragma config(Motor, motorC, leftMotor, tmotorEV3_Large,
 PIDControl, reversed, driveLeft, encoder)

task main()
{

Other Programming Languages

[216]

 repeat (forever) {
 lineTrackRight(S3, 37, 25, 0);
 }
}

Variables
In the EV3 LEGO MINDSTORMS software, all of the variables are global variables.
In RobotC, you can differentiate between local variables and global variables. Global
variables are defined at the beginning of a program and maintain their values
throughout. Local variables are only used within a subroutine and cannot be passed
to the main program. A discussion of pointers is beyond the scope of this text, save
to say you have the full power of C at your disposal. In the following program, I
have adapted a model for the proportional line follower. It is worth noting the use of
global versus local variables. Another key difference is math functions. With the EV3
LEGO MINDSTORMS software, you were limited to four inputs for an advanced
math function. In C, you have no limits:

#pragma config(Sensor, S1, reflect, sensorEV3_Color)
#pragma config(Motor, motorB, rightMOT, tmotorEV3_Large,
PIDControl, reversed, encoder)
#pragma config(Motor, motorC, leftMOT,
 tmotorEV3_Large, PIDControl, reversed, encoder)
//*!!Code automatically generated by 'ROBOTC' configuration
 wizard!!*//
int speed = 30; //global variables
float gain = 0.3;
int setpoint = 30;
int lowest = 100;
int highest = 0;
void scanLine() //a subroutine (or MyBlock)
{
 motor[rightMOT] = 10; //local variables
 motor[leftMOT] = -10;
 time1[T1] = 0;
 while(time1[T1] < 1500)
 {
 if (SensorValue[reflect] > highest)
 {
 highest = SensorValue[reflect];
 }
 if (SensorValue[reflect] < lowest)
 {
 lowest = SensorValue[reflect];
 }
 }

Chapter 10

[217]

 setpoint = (highest - lowest) / 2;
 motor[rightMOT] = 0;
 motor[leftMOT] = 0;
}
task main() //beginning of the main program
{
 float error; //local variables in main program
 scanLine(); //calling the subroutine
 sleep(2000);
 while (true)
 {
 error = SensorValue[reflect] - setpoint;
 motor[leftMOT] = speed - round(error * gain);
 motor[rightMOT] = speed + round(error * gain);
 wait1Msec(50);
 }
}

Remote control
Because RobotC is used in numerous robotics competitions, it actually has a GUI for
setting up a Joystick Control in the software. This allows you to control your EV3
with the joystick!

Other Programming Languages

[218]

Graphical programming
As I mentioned earlier, there is a newer version of RobotC that is graphical.
Instead of the wires visual programming such as LabVIEW, this is block-based
visual programming similar to Scratch. You drag commands from the Command
menu on the left part of the screen to the programming palette as you can see in the
following screenshot:

Then, with the click of a few buttons, you can convert your graphical images into
actual line code as you can see in the following program. You can compare the
program to the preceding graphical screenshots:

#pragma config(Motor, motorB, leftMotor,
 tmotorEV3_Large, PIDControl, reversed, driveLeft, encoder)
#pragma config(Motor, motorC, rightMotor,
 tmotorEV3_Large, PIDControl, reversed, driveRight, encoder)
task main()
{
 repeat (2) {
 forward(1, seconds, 25);
 wait(2, seconds);
 turnLeft(1, seconds, 50);
 wait(1, seconds);
 forward(1, rotations, 50);
 // Comment Field Moving and Turning
 }
}

Chapter 10

[219]

The number of commands available in the graphical version of RobotC is
significantly limited, but it allows a softer introduction. In the following
screenshot, you can see the Motor Commands menu:

Summary
In this chapter, we were introduced to two other programming languages, LabVIEW
and RobotC. This chapter was not meant as a tutorial for those languages, but to
highlight some of the differences and the potential of more sophisticated languages.

In the next chapter, we will explore communication between robots.

Communication
between Robots

In this chapter, we will explore how to use messaging via Bluetooth to enable
communication between robots. We will:

•	 Enable Bluetooth communication between robots
•	 Use one robot to control another
•	 Program two robots to communicate to maintain a safe driving distance
•	 Use two robots to collaborate to find a hidden target

Enabling communication
The official EV3 tutorials walk you through setting up Bluetooth communication
and setting up connections on the brick. The tutorials then move on to how to send
a message from one robot to another. One master EV3 robot can control up to seven
slave EV3 robots. Master-Slave robotic control is a common term in engineering. In
this arrangement, the master can communicate back and forth with all of the slave
robots. However, the slave robots cannot communicate with each other. There are
many examples on the Web using one EV3 as a remote control for a full robot. In this
chapter, I will focus on two full robots communicating with each other.

Communication between Robots

[222]

To start, we must name the robots. You can do that by connecting your EV3 brick to
your computer with the USB cable. In the Brick Information panel, you can change
the name of your EV3 brick by typing a new name in the Brick name box as shown in
the following screenshot. Following the industry standards, I have called the primary
brick master. You can name the brick whatever you like as long as each brick you
are using has a different name. I am calling the secondary robot slave1.

Next we will work directly with the bricks to enable communication between the
robots. The EV3 tutorials have you enable full communication each time you run
a program using the brick buttons. In truth, you only need to allow the robots to
discover each other once using the brick buttons. In subsequent programming,
you can make the connection using the software.

From the settings menu on your EV3 brick, select Bluetooth, as seen in the following
image. Do this on both of your bricks, the master and the slave.

Chapter 11

[223]

When you select Bluetooth by pressing the center button, you will see the Bluetooth
menu as shown in the following image. You should deselect the iPhone/iPad/iPod
option. You want to have both the Bluetooth and Visibility options selected. Do this
on both bricks. Once this is done, select Connections on both bricks just to make sure
that they can see each other.

Now select Search as shown in the following image. This will allow the pairing
between the EV3 bricks to begin.

Communication between Robots

[224]

From the master brick, you want to select the robot to which you want to pair
as shown in the following image. You only need to do this on the master brick,
not both the bricks.

When you select the robot to pair with, it will ask you if you want to connect.
Click on Connect to begin the pairing as shown in the following image:

At this point, a prompt to accept the pairing will appear on the slave robot. Accept
the pairing. Once accepted, it will ask you for a PASSKEY as shown in the following
image. Make sure you enter the same passkey on both robots.

Chapter 11

[225]

After you have entered the passkey, the robots should complete the connection.
You will see the display as shown in the following image:

This process for connecting the robots by using the brick buttons only needs to be
done once. However, if you do not do this initial pairing, when you try to execute
the programs, you will receive an error.

Communication between Robots

[226]

Messaging
In the EV3 tutorials (embedded in the EV3 LEGO MINDSTORMS software), they
present an example of messaging where feedback from the shaft encoders of a motor
on the master robot will make the slave robot move. However, the feedback in the
tutorial programs takes position readings from the motor on the master robot. This
is very similar to a knob on a remote control being used to make your robot move. I
will instead use power values so that we can emulate the speed of the master robot.

Follow the leader
In the following example, I used two similar robots. The robots do not need to be
identical, but will need to have the right motor plugged into port B and the left
motor into port C. I used two of the caster-bots from our earlier chapters. In this
program, when you push the master robot along a surface, the slave1 robot will
emulate the motions.

In the following screenshot is the program to be downloaded onto the master
robot. The program begins by turning on the brick's Bluetooth with the Bluetooth
Communication On block. Next, the program prepares a line of communication
between the master robot and the slave1 robot with the Bluetooth Communication
Initiate block. Note that this allows the master robot to send messages to the slave1
robot, but does not prepare the master robot to receive messages. You need to type
the correct name of the receiving robot in this block. After resetting the shaft encoder
on motor C with the Motor Rotation block, we enter the infinite Loop block called
Motion. The current power values are sent from the Motor Rotation block to the
Message Send Numeric blocks. I have chosen to have one signal for each motor.
Although I am just making the robot move backwards and forwards in this chapter,
having separate motor messages sets up the option for you to modify the code for
giving navigation instructions.

Chapter 11

[227]

The program for the slave robot is quite simple as you can see in the following
screenshot. We start out by turning on the brick's Bluetooth. Inside the Loop block,
we can see the program repeatedly accepts power current value messages from the
Messaging Receive Numeric block and sends them to the Move Tank On block.

Because these are the actual current power values measured by the shaft encoder on
the master robot, the slave robot does an efficient job of emulating the motion of the
other robot.

Maintain a distance
A lot of the current robotics research is geared towards developing autonomous
vehicles. A large part of that research is in collision avoidance and making sure the
cars do not come into contact with each other. In the following program, we will try
to maintain a fixed distance between the two robots using a proportional algorithm.
If you remember, in Chapter 8, Advanced Programming and Control, when we first
introduced the use of the proportional controller with the Ultrasonic Sensor, it was
relative to a fixed target. This is analogous to the problem of stopping at a dark line
on the ground using the Color Sensor. The problem of maintaining a fixed distance
to a moving target is more akin to line tracking.

We will use the same slave program as we used in the Follow the leader section.
All of the magic will happen in the program on the master robot. You will need to
mount an Ultrasonic Sensor pointing backwards on your master robot. You can plug
the motion sensor into port 4 on the master robot. This will be used to detect how
far away the slave robot is. There will be two parallel sequences, one sequence for
communication with the slave, and the other sequence to control the motion of the
master robot.

Communication between Robots

[228]

We begin the control sequence as follows:

1.	 Define the Variable blocks with values for the gain and setpoint distance in
our proportional controller.

2.	 Next the Bluetooth Connection blocks initiate a connection to the slave robot.
3.	 Then our Distance Sensing Loop block will send messages to the slave robot

so that a constant distance between the robots can be maintained.
4.	 Inside the Loop block, the Advanced Math block computes the difference

between the Ultrasonic Sensor block value and the value for the setpoint
distance, and multiplies this difference by the gain.

5.	 This power level is sent to the slave robot by the Messaging blocks.

A simple challenge would be to add in another variable for the speed of the master
robot into this algorithm, so the robot is not always playing catch up.

Chapter 11

[229]

The second sequence controls the motion of the master robot. We begin with a Wait
Time block in order to allow the slave robot a few seconds to catch up with the
master robot. Then we have the master robot move forward for several seconds, stop,
and then move backwards. Again, you should start the program on the slave robot
first. When you run the programs, you can play around with the value for the gain
and distance variables. You can try to create new situations to simulate traffic on a
highway. As an added challenge, you could add in a proportional line tracker to
both robots and have them track a line while maintaining a fixed distance.

Search and rescue
In the following program, we will use two robots to try and find a target. Without
knowing where the target is, each robot will travel outwards and look for a target.
When the target is found, the other robot will join the robot that found the target.
If neither one finds the target, both robots return to their starting positions.

If you extend this model to multiple robots, we have a branch of robotics called
swarming. How can you use multiple autonomous robots to find an unknown
target in two-dimensional (or three-dimensional) space? The uses start from
basic vacuum cleaner robots up to flying autonomous quad-copters finding lost
hikers and forest fires.

Communication between Robots

[230]

In this particular example, you should place two identical robots back to back, as
you can see in the preceding image. Mount each robot with a Color Sensor pointed
downwards to look for the target. In the preceding image, most of the terrain was a
white surface. But as you can see in the following image, the target is a black sheet of
paper. At the front of each robot, place a Touch Sensor. When the Touch Sensor hits
a barrier, it will trigger the Color Sensor to measure the color on the surface below it.
Place a colored target before the barrier in only one direction.

On both robots, the Touch Sensor is plugged into port 1, and the Color Sensor is
plugged into port 3. The Ultrasonic Sensor is not needed for this program, but is
left over from the Maintain a distance section's program.

Let's start out by examining the program for the slave robot. There are two parallel
sequences in this program, as you can see in the following screenshot. The first
sequence receives movement instructions from the master robot. This is similar to the
Slave Loop block from the earlier programs, except now I am using a Move Steering
block to simplify the programming.

Chapter 11

[231]

The second sequence sends information back to the master robot in the
following manner:

1.	 This sequence begins only once the Touch Sensor on the slave robot has been
triggered by the Wait Touch Sensor Change block.

2.	 What is different is that now the Bluetooth Communication Initiate block
prepares the master robot to receive messages back from slave1.

3.	 Next, a Messaging Send Logic block sends back a Boolean true statement
called look to the master. This allows the master to know that the slave robot
has reached the wall and is now sending color information.

4.	 The Color Detect Loop block will constantly send readings from the value of
the Color Sensor Measuring block back to the master via the Messaging Send
Numeric block.

Communication between Robots

[232]

To simplify the program on the master robot, I have used several My Blocks on the
third of three parallel sequences, as you can see in the following screenshot:

The first sequence defines default values for several variables and resets some sensor
values. We begin by setting the Boolean Logic Variable blocks EV3-M and EV3-S to
false (M for master and S for slave). These variables keep track of when the Touch
Sensor on each robot has been triggered, and will change to true after their respective
Touch Sensors have been depressed. The Numeric Variable block color keeps track
of which robot has detected the target. The default value of 0 indicates that neither
robot has detected the target. A value of 1 will indicate the master has detected the
target, and a value of 2 will indicate that slave1 has detected the target. A new sensor
we have not discussed before is the Timer Sensor block. You can actually have up to
eight individual Timer Sensors all running independently. We are going to use two
different Timer Sensors. We will use one Timer Sensor to measure the travel time
it takes to reach the wall for each robot. We use the Reset Timer block to zero these
timers at the beginning of the program.

Chapter 11

[233]

The second sequence will send motion control commands to the slave robot in
addition to keeping track of the travel time for the slave robot. We begin the thread
by initiating communication with the slave robot. Notice that we have a Loop
Messaging Compare block. Inside the block is the command for the slave robot
to move forward. The trigger to break this loop is given when the Boolean true
statement is received from the messaging send logic block called look on the slave
robot. Next, the travel time of the slave robot is recorded by sending the value of the
Timer Measure block 2 to the Numeric Variable block called 2. Finally, a Messaging
Send Numeric block commands the slave to stop, and the Boolean Variable EV3-S is
changed to true to indicate that the slave has reached the barrier.

The third sequence stops the master robot at the wall and makes a color measurement.
It then decides which robot has found the target and where the robots should
rendezvous. I have simplified the third sequence using several My Blocks as follows:

1.	 After the master robot has been set in motion, the first 1 My Block stops the
master robot once it has reached the barrier and records the travel time.

2.	 The Both Touch My Block checks to see whether both robots have reached
their respective barriers.

3.	 The Color My Block decides which robot has found the target, if either of
them has found the target.

4.	 Next, a Math block calculates the sum of the individual trip times of each
individual robot.

5.	 Finally, the Return My Block decides on the rendezvous point.

In the following screenshot, if we look inside of the 1 My Block, we can see that
the master robot waits for a change of state of the Touch Sensor and then stops the
robot. At this point, the Timer Measure Time 1 block sends its value to the Numeric
Variable block 1 to record the duration of the travel time for the master robot.
Additionally, a true statement is sent to the Boolean Logic Variable block EV3-M
to record that the master robot has reached the barrier.

Communication between Robots

[234]

In the following screenshot, we can see inside of the Both Touch My Block. This
is a Boolean Logic Loop that continues to loop until it receives a true statement
from the Logic Operations And block. This only becomes true once both the Logic
Variable block EV3-M and the Logic Variable Block EV3-S are turned to true. As the
Logic Variable block EV3-S is changed in a parallel sequence, this pauses the third
sequence until the slave robot has reached the barrier.

In the following screenshot, we can see inside of the Color My Block. This My Block
will decide whether the target has been detected and adjust the Numeric Variable
block colour appropriately. Remember, the default value for the Numeric Variable
block colour is 0, which indicates that the target has not been found. The Switch
Color Sensor block will measure the color type from the Color Sensor on the master.
If the measured color is the color of the target, then the Numeric Variable block
colour will be set to 1 to indicate that the master has found the target. We are not
used to seeing a Messaging Receive block on the master, but this block receives the
value of the slave's Color Sensor and sends it to the Switch Numeric block. Each
color has a coded number, and if that number matches (in this case 1 for black), then
the Numeric Variable block colour will be set to 2 to indicate that the slave has found
the target.

Chapter 11

[235]

Now that we have decided whether the target has been found, we can choose a
course of action for our robots. In the following three screenshots, we can see inside
of the Return My Block. The value of the Numeric Variable block Colour will be
sent to a Switch Numeric block, which we are viewing in the tabbed view. In the
following screenshot, the choice for tab 1 is displayed:

Communication between Robots

[236]

Completing the search
We will now examine each of the three choices in our switch block. Each case in the
switch block will execute a series of commands based on which robot has discovered
the target.

Choice 1 indicates that the master has found the robot. Thus, a command is sent to
the slave to join the master robot. The motor commands are sent to the slave robot
for an amount of time that is the value of the Numeric Variable trip. The value of the
trip is the sum of the amount of time it takes for both robots to reach their respective
targets. In this way, we can approximate the amount of time it will take for one robot
to return.

In the following screenshot, we can see tab 2, which is the case for when the
slave finds the target. Similarly, the travel time is again dictated by the Numeric
Variable trip.

The default case is when neither robot finds the target. In this case, both robots
will return back to where they started. In the following screenshot, you can see the
separate motion commands for each robot, but the duration of each respective return
trip mirrors how much time it took to reach their destination.

Chapter 11

[237]

Once the robots have returned to the origin, you could send the robots out again to
try and acquire the target. You could extend this idea to multiple robots, which is the
concept of the swarm.

Summary
In this chapter, you learned how to use messaging and Bluetooth communication
between robots. You learned how to make robots interact with each other. You also
learned how to dynamically update the motions of a slave robot based on sensor
feedback. Lastly, you saw how the power of multiple robots working together
enables us to accomplish more than one robot can by itself.

In the next chapter, we will explore one of the advanced programs from LEGO,
Gyro Boy.

Advanced Robot – Gyro Boy
In this chapter, we will analyze one of the impressive programs that come in the
Education Edition of the EV3 software. We will look in depth at the program for
the model called Gyro Boy. Gyro Boy is a two-wheeled upright balancing robot.
Gyro Boy uses a combination of the Motor Rotation sensors working with the Gyro
Sensor to balance upright. The robot also responds to commands and feedback from
the Color Sensor and the Ultrasonic Sensor. This model is an amazing example of
what we can build with the LEGO MINDSTORMS kit. However, the LEGO supplied
program is lacking in documentation and a full explanation of the algorithms. LEGO
provides the user with complex example models, such as Gyro Boy, as an inspiration
of what you can build and design with LEGO MINDSTORMS. My goal in this
chapter is to close the gap and explain how this model works. In this chapter,
we will:

•	 Explain the concept behind a two-wheeled upright balancing robot
•	 Introduce the Gyro Boy model
•	 Have a discussion of programming bugbears
•	 Have an overview of the main Gyro Boy program
•	 Have an in depth explanation of the various My Blocks in the Gyro

Boy program

Advanced Robot – Gyro Boy

[240]

Concept of a balancing robot
The inspiration for Gyro Boy is the Segway robot. The LEGO community has been
building LEGO MINDSTORMS two-wheeled balancing robots almost since the
introduction of the Segway by Dean Kamen. The real Segway is a two-wheeled
motorized personal transport device that uses several Gyro Sensors to detect the
pitch and pitch rate of the vehicle. The real Segway uses additional Gyro Sensors
for redundancy and to detect roll (turning left and right). The physics model for a
Segway is what we call the inverted pendulum problem. A simple pendulum has
its pivot point at the top and the bob swings back and forth below the pivot. An
inverted pendulum has this pivot point at the bottom with the bob oscillating above
the pivot. We can think of a metronome or even a human being as simple inverted
pendulums. In the case of the Segway, the goal is to minimize the oscillations and
keep the vehicle upright and then provide movement forward, backwards, as well as
turn left or/and right.

You can find many LEGO NXT Segway models on the Internet. Designing
the software for a moveable inverted pendulum robot is a common project in
engineering design classes. Most of the earlier NXT models use the HiTechnic Gyro
Sensor. You can still use the HiTechnic sensor if you do not have a LEGO Gyro
Sensor. You will find that the LEGO EV3 brick can read the values from the LEGO
Gyro Sensor, which is a Universal Asynchronous Receiver/Transmitter (UART)
sensor that takes three times more samples per second than the HiTechnic sensor,
which is an analog sensor.

The Gyro Boy model
The EV3 Gyro Boy model developed by LEGO builds on the Segway designs of
the numerous LEGO hobbyists. Not only does Gyro Boy balance itself using a
Gyro Sensor, but it also takes commands using the Ultrasonic Sensors and the
Color Sensors.

Chapter 12

[241]

The mechanical design for Gyro Boy has many impressive features. The building
designs for Gyro Boy can be found embedded in the Educational Edition of the
EV3 software. If you have the Home Edition of the software, you can download the
building instructions from various websites such as RobotSquare by Laurens Valk
at http://robotsquare.com/. The design is well balanced and comes with a color-
coded stand to get the robot started and send color commands to the robot. There is
also a medium motor in the model that can be used to move the arms of the model.
The medium motor uses the Technic Knob Wheel as a type of crown gear to control
both arms. One arm has a Color Sensor attached to it, and the other arm has the
Ultrasonic motion sensor. The official LEGO program does little more than wiggle
the arms whenever the motion sensor detects an object. Although the medium motor
is somewhat superfluous in the actual Gyro Boy model, it is needed to keep the
robot balanced. If you were to change the physical model, then you would change
the equations on which the program is based. Removing the motor would mean
retuning the numerical constants in the code so that the robot stays balanced.

http://robotsquare.com/

Advanced Robot – Gyro Boy

[242]

However, you could change the code to actually take advantage of the motion of
the medium motor. One example is the modified Gyro Boy code written by Dean
Hystad, which you can find on FIRST LEGO League forums at http://forums.
usfirst.org/showthread.php?20729-Gyro-Boy-Program. He keeps the motion
sensor in an upright position and only lowers the sensor when the robot goes into a
tracking mode.

Sensor feedback
The three sensors in the Gyro Boy robot are used for human and autonomous
feedback and control of the robot. The Color Sensor is used for human control.
The Gyro Boy stand has the colored pieces built into it for just this reason,
as you can see in the following image:

http://forums.usfirst.org/showthread.php?20729-Gyro-Boy-Program
http://forums.usfirst.org/showthread.php?20729-Gyro-Boy-Program

Chapter 12

[243]

When the Color Sensor detects the colored bricks it will execute a series of
commands as detailed in the following bullet list:

•	 When the robot detects the red bricks, it will stop
•	 When the robot detects the green bricks, it will move forward
•	 The blue and yellow bricks will tell the robot to turn right or left respectively
•	 If you expose the sensor to the white bricks on the stand, Gyro Boy will move

in reverse

You could just as easily accomplish this type of control using the IR sensor.

If the Ultrasonic motion sensor detects an obstacle (less than 10 inches), then the
robot will execute a series of obstacle-avoidance commands. Feedback is also sent
to the screen display and colored lights on the EV3 brick. While the sensors are
calibrating, the robot is asleep and the image of closed eyes is displayed on the
screen. The Gyro Boy program does not calibrate within the code, so you need to
replug (physically calibrate) the Gyro Sensor before running the program. While
the robot is running, a set of open eyes are displayed on the screen. If the robot falls
down, crossed eyes are displayed. After the robot falls, you can reset Gyro Boy by
placing it back on its stand and depressing the Touch Sensor at the rear of the robot.
If the robot never leaves the sleeping state when you first run the code, the Gyro
Sensor is probably drifting and needs to be manually reset by unplugging the
Gyro Sensor.

Programming bugbears
The EV3 Programs provided by LEGO with the software are highly impressive, but
are nearly impossible to understand. The LEGO tutorials do accomplish their goal
of introducing the reader to the blocks and vernacular of EV3 programming. The
provided models demonstrate the potential of the kit for the advanced hobbyist.
This is a great marketing tool for LEGO when one watches videos of the extremely
cool models that can be built with EV3. However, the programs are entirely lacking
in any kind of documentation. One of the main reasons I wrote a book for the
intermediate level user is this need for explanation of these great programs and to
help bridge the gap between the rudimentary tutorials and the advanced models.

Advanced Robot – Gyro Boy

[244]

There are great advantages to visual programming languages such as LabVIEW,
Scratch, and the EV3 LEGO MINDSTORMS software. They can be just as powerful
as line code, but examining the main code for the Gyro Boy program in the
following screenshot, we can see that LEGO does not make use of the
advantages of visual programming:

One of the leading rules in writing a good program in a visual programming
language is that you should be able to view your entire program on your computer
screen at one time. Although I myself am guilty of not following this, as you can
see in the preceding screenshot, we have to zoom out to a ridiculous level to view
the entire Gyro Boy program. Most of the blocks in the preceding screenshot
are too small to recognize. Compounding the nonvisible details, the preceding
screenshot shows the switch blocks in a tabbed view instead of a flat view. In
complex programs, one should make prodigious use of My Blocks. This allows for
a hierarchical program with several levels of depth. Such programs are much easier
for the reader to decipher and to debug. When one finally zooms into the program,
you will also find a complete and utter lack of comments to document the code. Sans
comments, understanding the code can be an insurmountable task. If the names of
the variables and loops were informative, this might make the lack of documentation
forgivable. However, most of the loops and variables have short abbreviated names
that are equally confusing. Lastly, the algorithms contain many numerical constants
embedded inside the Math blocks. These constants actually represent what should be
variables, which would have to be tuned for different surfaces or if you redesigned
the mechanical features of Gyro Boy. The aforementioned Gyro Boy code written
by Dean Hystad is well commented and doesn't have the previously mentioned
programming bugbears. In this chapter, I will attempt to provide a road map to
decipher the Gyro Boy program, which really is an impressive example of the
potential of EV3.

Chapter 12

[245]

The main program
The Gyro Boy project does contain several My Blocks in addition to the main
program. I will explain these My Blocks later in the chapter. In the project, the main
program is called 001. There are two separate parts of the 001 program. There is the
main program, Loop M, which controls the robot, and the Control Loop, BHV, which
looks for feedback from the sensors.

We will first examine the main program Loop. In the following screenshot, we can
see an Infinite Loop block titled M. Inside the loop, several My Blocks are called to
execute the various subroutines. Instead of one long horizontal line of blocks as
shown in the previous screenshot, I have rearranged the Loop block M into several
rows. In this way, we can view the entire code on one screen.

The main program loop M repeats each time the robot is set up upright to begin
running. The RST My Block resets several variables that will be used in the program
to zero, and also resets the Gyro Sensor, the motor shaft encoders, and the timer to
zero. After the Display block shows a set of sleeping eyes, the gOS My Block is run.

The gOS My Block measures the consistent bias error in the rate of the Gyro Sensor.
Gyro Sensors inherently have some drift, even after resetting the sensor. For most
applications, this drift will not affect your programs, but the Gyro Boy requires
extra precision. This is done during the start up sequence, so this error in the Gyro
rate value can be subtracted from subsequent balancing calculations. This start up
sequence may take some time and the program will not continue until all of the
calibrations are complete.

The gAng variable block is set to a small value to account for the slight leaning
forward of the robot during the start up sequence. Next, the robot starts to wake
up as indicated to the user by the Sound block and the Display block. The program
knows the robot is waking up by changing the st variable block to a value of 1.
The st variable block tells us what state (sleeping, waking up, or fully active) the
robot is in.

Advanced Robot – Gyro Boy

[246]

The program next enters the BAL Loop block, or balance loop. The program will
continue to stay in the balance loop as long as the robot is balanced and has not
fallen down. Inside the balance loop, the program first executes the GT My Block.
The GT My Block gets timing information from Timer sensor block 1, which
determines how long each iteration of the BAL Loop block takes. This information
is used to calculate derivatives and integrals of the sensor values. The GG My Block
gets Gyro Sensor feedback and calculates the Gyro position and Gyro rate. The GM
My Block gets motor shaft encoder feedback and calculates the motor position and
motor speed.

The EQ My Block calculates the necessary power settings using feedback from the
Gyro, motor, and Timer sensor blocks so that the robot can stay upright.

The cntrl My Block takes the power settings from the EQ My Block and adjusts
them with commands given to the robot from the command and control loop
BHV. The control loop that runs parallel to the main program takes feedback from
the Color Sensor and the Ultrasonic motion sensor. The cntrl My Block sends
appropriate power levels to each of the unregulated motor blocks. We want
unregulated motor blocks because we want to directly control the motor power
using the program and bypass the controllers built into the regulated motor blocks.

Next, the CHK My Block checks to see if the robot is still in an upright position. If it is
upright, the ok logic variable block is written as false, otherwise the ok logic variable
block is declared true.

In an attempt to maintain a level of consistency in the duration of each iteration
of the balance loop, the difference in output of the Timer sensor 1 blocks from the
beginning and end of the loop are used to determine the length of time to wait before
proceeding with the next iteration of the balance loop. A consistent duration of each
iteration of the loop allows us to not weigh the averaging of values that takes place
from one iteration to the next.

Chapter 12

[247]

The balance loop is broken by an affirmative answer to the logic statement provided
by the ok Variable block. In other words, if the robot has fallen down, it breaks
the loop. The Move Tank block stops the motors and the st Variable block to set
the robot to state 0, which is a resting state. When the robot is in state 0, the motor
variable blocks Cdrv and Cstr are set to 0 via the command loop, which we will see
in the following section. To symbolize that the robot is in distress, the brick status
light block sets the EV3 brick LED to turn red and the Display block shows knocked
out eyes. The Sound block generates a sound of revving down the engines. The
audiovisual cues are a prompt for the human to reset the robot onto its stand. The
robot then waits for the user to depress the Touch Sensor. After the Touch Sensor is
pressed, the Touch Sensor Wait block allows the main loop to continue.

Advanced Robot – Gyro Boy

[248]

The control program
The second part of the program, the control loop BHV, has its own Start block, which
allows this part of the program to run in parallel to the main programming loop. At
the beginning, the st Variable block sets the robot state to 0 or resting. The program
then enters the BHV Loop block or the robot behavior loop.

A numeric switch block examines which of the three robot states the robot is in,
with 0 for resting state, 1 for waking state, and 2 for the active state. The resting state
(state 0) is the default case of the switch block. In this state, the variables blocks Cdrv
and Cstr are set to 0. The Cdrv variables block (Control drive) is used to control
the speed at which the robot drives either forward or backwards. The Cstr variable
block (Control steering) is used to control in which direction the robot steers. Setting
both to 0 will result in no motion by the robot.

After the Gyro Sensor has been calibrated by the gOS My Block in the main program,
the control state is set to state 1, which is the waking state. In the waking state, the
robot moves slowly and confirms that it is in a balancing state, and what the upright
orientation is. In the Switch block, we can see in state 1 that the variable block Cdrv
is set to a slower value of 40. Gyro Boy will move faster in the active state. At the end
of a 4 second delay, due to a Wait block, the st variable block is set to state 2, which
allows the robot to be in the active state.

In the active state, state 2 of the numeric switch block, the robot is ready to accept
commands and feedback from the Color and Ultrasonic Sensors. The Color Sensor
switch block has six choices, with the default case being no color detected and no
action taken. Each case of the Switch block (except the default case) begins with a
Sound block so that you know a color has been detected. The following list tells you
what happens when the color has been detected:

•	 The red case will set the variables blocks Cdrv and Cstr to 0, thus stopping
the robot

•	 The green case will cause the robot to move straightforward by setting the
variable block Cdrv to 150, and the variable block Cstr to 0

•	 The yellow and blue cases will set the variable block Cstr to 70 or -70
respectively, thus causing the robot to turn left or right

If the robot was previously stopped, then it will turn in place. If the robot is moving
forward, it will continue to move forward and turn at the same time.

It is not obvious in the video embedded in the software, but there is actually a
reverse command, which is activated by showing the white bricks to the Color
Sensor. The white case will set the variable blocks Cdrv to a value of -75, which
you may note is half of the forward value selected in the green case.

Chapter 12

[249]

The Gyro Boy is also aware of obstacles in its path, which we can see in the
preceding screenshot. After the Color Sensor switch block comes an Ultrasonic
motion sensor switch block case, which is set to return a false case if no object is
detected within 10 inches or 25 centimeters, and thus no action is taken. However,
if an object is detected within 25 centimeters, then a case with an obstacle avoidance
algorithm is executed.

First the variables block Cstr is set to 0 to stop the robot from turning. Next, the
previous driving speed is stored into the variable block oldDr. The robot slowly
backs up with the variable blocks Cdrv set to -10, and wiggles its arms using the
Move Medium Motor blocks.

Advanced Robot – Gyro Boy

[250]

The robot will next turn either left or right to avoid the obstacle. The choice of
turning left or right is actually selected at random. If the robot is caught up in a
corner, this will allow the robot to eventually find its way out of the corner. A
numeric random block chooses a random integer between -1 and 1. The compare
block tests to see whether the result of the random generator is equal to 1 or not.
Interestingly, this choice of algorithm gives a 66 percent chance of being false, since
both -1 and 0 are options, and there is only a 33 percent chance of being true. This
is a bug in the LEGO firmware that causes the first and last values in the range of
values to have only half the probability of being selected. You could actually develop
a workaround for this bug, if you increase the range from -1 to 2. Then if the random
number generator selects the value of 2, rewrite this value as -1. If I wrote the
program, I might have chosen instead to use a logic random block.

The compare block is connected by wire to the logic switch block. Each case of the
logic switch blocks sets the variable block Cstr to either 70 or -70 to enable the
turning. After 4 seconds of turning, the robot stops (by setting the variable blocks
Cdrv to 0). The program next restores the robot to its previous condition of motion
by writing the value of the forward or reverse motion stored in the variable block
oldDr back to the variable block Cdrv, as you can see in the following screenshot:

Chapter 12

[251]

The RST My Block
The RST My block resets all of the variables to their starting values and resets the
readings on all of the Gyro and Motor Rotation sensors. The main programming loop
starts each and every time the robot is set upright. Since the RST My Block is inside
of the main programming loop, it is not merely an initialization block that is only run
at the beginning of the entire program, but every time that the robot is set upright it
goes to enter the balancing loop. The My Block begins by resetting the values for the
shaft encoders on both of the large motors. Next, the subroutine resets the value for
the Gyro Sensor. When you look at the Timer Sensor block, you should note the ID
on the Timer block, which indicates that this is the second Timer block, not the first
Timer block. This timer is used to detect when the robot has fallen over. Since you
cannot name timers, a comment in the code would have been really helpful here.
Numerous numeric variable blocks are set to zero. There is one logic variable block,
the ok variable block, which is set to false to indicate that the robot is stable. If the ok
variable block were true, then the stability of the robot would need to be checked.

We have previously seen the variable blocks Cstr, Cdrv, and gAng. I will define
the remaining variable blocks as we work through the descriptions of the rest of
the My Blocks.

The gOS My Block
All gyros drift over time. The gOS My Block measures this drift and the resulting bias
error in the rate of the Gyro Sensor. As a FIRST LEGO League tournament host, one
of the largest complaints about the EV3 Gyro Sensor I hear about is the drift in the
sensor readings. If you look at the HiTechnic sensor block, you may notice an input
for a bias offset. Even after using the Gyro Sensor reset block, the Gyro Sensor may
still not read 0. If you change the mode of the Gyro Sensor while it is perfectly still,
it will reset to 0, but that is not done in the Gyro Boy program. The gOS My Block
compensates for this bias. You can think of this as a DC offset that you may see in
electrical signals.

Advanced Robot – Gyro Boy

[252]

The gOS My Block measures the Gyro offset and then subtracts this value from the
calculations used later to keep Gyro Boy balanced. The robot needs to be completely
stationary while the offset is determined. This could be fixed by adding a one-time
delay at the start of the program. A delay of two seconds after the button is pressed
would be enough to allow the robot to be at rest (no wobbling) when the Gyro
offset is initially determined. However the way the program is written, you need
to be gentle when pushing the brick button to start the program. Any wobbling can
prevent the robot from determining the Gyro offset, and thus the robot never wakes
up. In the following screenshot, you can see the entire gOS My Block. Again, the
bugbear of a long horizontal program prevents us from easily understanding the
entire program at a quick glance.

I have tried to rearrange the program in such a way that is visually easier to
understand. However, I have had to split the program into two sections (left and
right) as you can see in the following two screenshots. The OSL Loop block is the
offset loop block. The goal of this block is twofold. The first goal is to determine
the average value of the Gyro rate, and second is to measure the variation in the
Gyro rate over a period of time. If there is minimal variation (thus making the Gyro
rate constant), then we know the average bias level and the block can terminate.
Remember that these are measurements of the rotational speed or rate of the Gyro,
not the absolute Gyro angular position value.

There are several new variable blocks in the gOS My Block. The gMn variable block
stores the minimum measured Gyro value. The gMx variable block stores the
maximum measured Gyro value. The gSum variable block is used to add up 200 Gyro
rates for the purpose of finding an average value. The gyro variable block is used to
store the current Gyro rate during an individual iteration of the gChk loop block.

Chapter 12

[253]

The OSL Loop begins by defining extreme values for gMn and gMx. These values
are beyond the maximum range of the Gyro Sensor, which is about 400 degrees/
second. gMx is negative and gMn is positive so that we are guaranteed to get the real
minimum and maximum values later. gSUM is set to 0 because it is the first iteration.
The gChk Loop block, the Gyro check loop, will average the value of the Gyro rate for
about 1 second. The Gyro check loop will run for 200 iterations, with a Wait block of
0.004 seconds inserted to give some time between samples.

Once inside the gChk loop block, the value of the Gyro Sensor block is stored to the
gyro variable block. The sum of the previous gSum value and the current Gyro rate
are stored to the gSum variable block. Next, the program reduces the limits of the
gMx and gMn variables. The variable names are confusing here because the gMn has
positive numbers and the gMx has negative values. A compare block determines if
the value of the Gyro Sensor is greater than gMx (which starts out at -1000). If this is
true, then a logic switch block updates gMx by writing the value of the gyro variable
block to the gMx variable block. Next, the inverse happens where the gMn variable
block is updated in a similar manner. If the value of the gyro variable block is less
than gMn, then gMn is replaced by the value of the gyro variable block.

Advanced Robot – Gyro Boy

[254]

After 200 iterations, the gChk loop block terminates and next the program tests to
see how far apart gMn and gMx are as we can see in the following screenshot. A Math
block calculates the difference between gMn and gMx. If the difference is less than 2
degrees/second, then the OSL loop can terminate. If the difference is greater than
2, this means there is still considerable variation in the Gyro rate and the robot was
not perfectly still. Thus, the entire process is run again. Upon termination of the
OSL loop, a Math block divides the value of the gSUM variable block by 200. This is
because we added the Gyro rate up over 200 iterations. By dividing it by 200, we are
calculating the average value on the consistent Gyro offset bias. This value is stored
to the gOS variable block for use in the main program and in other My Blocks.

Chapter 12

[255]

The GT My Block
The GT My Block uses a Timer block to measure the duration of a single loop
iteration. The timer value is used to determine the value of the tInt variable block,
which is the average period of time of one iteration of the balance loop, over which
the Gyro rates are integrated to determine the Gyro position. tInt is also used to
calculate the derivative of the motor position to determine the motor rate. Because
the rate at which the program executes may vary, the integration time will vary.
Thus, the GT My Block allows us to compensate for any affect on calculations in
other parts of our program.

The variable block cLo is a loop counter variable. Whenever the main programming
loop runs, the loop counter will be set to zero in the RST My Block. Thus, the
compare block and the logic switch block will set the tInt variable block value to
0.014 seconds and reset timer 1 with the reset timer block. After the switch block, the
index of the loop counter cLo will be increased by 1. In all subsequent calls of the
GT My Block, the integration time will be calculated by the amount of time it takes
to execute the Balance Loop block. This is calculated by dividing the value of Timer
Sensor block 1 by the loop counter cLo. So, tInt is not the time of the most recent
iteration, but the average of all iterations.

The GG My Block
The GG My Block gets Gyro Sensor feedback and calculates values to store to the Gyro
rate and angular position variables. The variable block gSpd stores the current rate
of rotation of the Gyro Sensor after accounting for the offset bias. The calculation is
not quite as simple as subtracting the bias as we can see from the detailed equation
inside the Block Text Field of the Advanced Math block. A new Gyro offset is actually
calculated from 99.95 percent of the old gOS variable block and 0.05 percent of the
current Gyro rate. This is to account for increased bias over time. It is this new Gyro
offset that is subtracted from the current Gyro Sensor block value to return the value
for the gSpd variable block.

Advanced Robot – Gyro Boy

[256]

As opposed to measuring the angle value of the Gyro Sensor directly, the value
of the gAng variable block is calculated by integrating the value of the Gyro rate.
The value of the gSpd variable block is multiplied by the unit of time over which
it is integrated, is equivalent to saying the change in angle is equal to the Gyro rate
multiplied by the elapsed time. The Gyro rate is the gSpd variable block and the
elapsed time is the tInt variable block. The change in angle is added to the
previous value of the gAng angle.

The GM My Block
The GM My Block gets motor shaft encoder sensor feedback and calculates values to
store to the motor position and motor speed variables. The GM My Block does not
measure the motor speed directly in the same way the GG My Block does. Instead,
it calculates the derivative of the motor positions, or how much the values of the
motor positions have changed over the time of the balance loop iterations. The
motor position is almost a direct read from the shaft encoders with a slight tweak
to account for historical variations between the two motors due to the turning of
the robot. Having the current motor positions and speeds will become important
when trying to calculate the needed accelerations to the motors to maintain an
upright position.

The motor speed calculation begins by recalling the sum of the two motor shaft
encoder values from the previous iteration using the mSUM variable block. Although
the mSUM variable block is written with this sum, if you trace the data wires, you can
see that the value of the mSUM variable block, which is used is the GM My Block, is the
value from when the block was executed and not the current value. A subtraction
Math block then calculates the difference between the old value of the mSUM variable
block and the new sum of the shaft encoders. The sum is used because when the
robot is turning, the same amount is added and subtracted from each motor position
value, thus canceling out the change in position due to turning. The result of the
second subtraction block is how much the motors on average have turned and
thus this difference is added to the old value of the mPos variable block, the motor
position, and a new value is written to the mPos variable block.

The difference between the two shaft encoders is calculated and stored to the
variable block mDiff. However, it should be noted that this variable block is
never used again in the program.

Chapter 12

[257]

The value of the mSpd variable block, the motor speed, is calculated by taking the
derivative or rate of change of the motor position. First, the change in the sum of the
motor shaft positions, which we used before, is stored to the value of the mD variable
block, or motor delta variable. We use the word delta for change in the value. This is
added to the values of the motor delta variable from the previous three iterations of
the balance loop, which are the variable blocks mDP1, mDP2, and mDP3.

The values of the shaft encoders are averaged by using the Advanced Math block to
add them and divide the result by 4. This average value of the shaft encoder change
over 4 iterations is then divided by the tInt variable block, the time integral for the
balance loop. The motor speed is the rate of change of the motors, thus the change
in position is divided by the change in time. This motor speed is stored to the mSpd
variable block. In the final blocks, the motor delta variable blocks are updated to the
current iteration by shifting the values of the mDP variables blocks from 0 to 1, 1 to 2,
and 2 to 3.

The EQ My Block
The EQ My Block provides an equation that controls the power of the motors. This
equation determines if the robot needs to accelerate to stay upright. We are solving
the inverted pendulum problem with this calculation. By the end of the EQ My Block,
a new value is generated for the pwr variable block (the power variable).

Advanced Robot – Gyro Boy

[258]

A series of three Advanced Math blocks are used to calculate the value of the power
variable, which in turn leads to the control of the motors. Although the Cdrv variable
block affects how we control whether the robot drives forward or backwards, it is the
value of the pwr variable block that sets the level of motor speed to keep the robot
upright. Essentially, we are trying to determine whether the robot needs to accelerate
to stay upright. If the Advanced Math block could handle more inputs, then only one
Advanced Math block would be needed. The value of the power variable is based
on input from several numeric variable blocks, including the Cdrv, time integral
(tInt), Gyro angle (gAng), Gyro speed (gSpd), motor position (mPos), and motor
speed (mSpd). Each of these variables provides sensor feedback to the value of the
motor power variable. Embedded into the Advanced Math blocks are several gain
constants and coefficients, which tune and optimize the robot. If the program were
well written, these gain constants would be defined as distinct variables instead of
being hidden inside of the math functions.

In the first part of the EQ My Block, the motor position variable is updated by
integrating the control driving rate variable over a certain period of time. A simple
physics model for this integral calculation would be that distance is speed multiplied
by time. The Math block multiplies the tInt variable block by the Cdrv variable
block (speed). This factor is subtracted from the previous value of the mPos variable
block to return a new value for the motor position.

Next, the weighted values of each of the variable blocks (gAng, gSpd, mPos, mSpd,
and Cdrv) are added together to obtain a value for the pwr variable block. They are
weighted by multiplying the values by their respective gain constants inside of the
Advanced Math blocks. Of these, you might notice that the Gyro angle variable,
gAng, has a gain value much larger than the other feedback terms. That is largely
because of its primary importance. We want the robot to stay upright and have
a very small (if not zero) value for the Gyro angle. The motor speed and position
variables are important because if we want to accelerate the robot, it is helpful to
know the current motor speed and position.

Chapter 12

[259]

The final steps in this My Block are to put limits on the power variable. The
maximum value possible for the motor power is 100. The first compare block
determines whether the value of the pwr variable block is greater than 100. If it is
greater, then the logic switch block overwrites the pwr variable block with a value
of 100. Then, in the opposite direction, if the power variable is less than -100, the
pwr variable block is overwritten with the value -100. The false case of these logic
switch blocks are empty, which is why I have presented them in a tabbed view in the
preceding screenshot.

The cntrl My Block
The cntrl My Block is used to control the left and right motors and to update the
mPos variable block. This updating of mPos is identical to what was done in the EQ
My Block, where the motor position is calculated by integrating the speed. The Math
block multiplies the tInt variable block by the Cdrv variable block. This factor is
subtracted from the previous value of the mPos variable block to return a new
value for the motor position. This new value for mPos is used for the next run
of the balance loop.

Advanced Robot – Gyro Boy

[260]

The program takes the settings from the pwr variable block as the base power level
for each motor. The code then uses the Math blocks to either increase or decrease the
power to each motor so that the robot can turn. Even for turning, you increase the
power of one motor and decrease the power of the other. The multiply Math block
multiplies the Cstr variable block, the control steering variable by 0.1, so it has
a lesser influence when it is added (or subtracted) to the left or right motor
speed levels.

You can see the output plugs of the cntrl My Block, which are used to send the power
levels to each motor. As you can see in the main program at the beginning of this
chapter, there are two wires coming from the output plugs of the cntrl My Block.

The CHK My Block
The CHK My Block is used to make a check to see if the robot is upright or has fallen
down. If the pwr variable block has an absolute value that is less than 100, timer 2 is
reset. When the timer switch block measures a reading less than 1, then the state of
the ok variable block is not touched and the balance loop keeps running. The initial
state of the ok variable block was false. If the pwr variable block has an absolute
value that is equal to 100 (we know it cannot be greater), timer 2 is not affected
(thus having a larger value), and the ok variable writes a true statement, which
causes the balance loop to end.

Chapter 12

[261]

Looking in more detail, if the logic switch block receives a true value, then Timer
Sensor block 2 is reset. Lastly, you saw a Timer Sensor block 2 during the RST My
Block. So timer 2 was reset at the beginning of the main programming loop. The
compare switch block will change the logic variable block ok to a true condition if
timer 2 is greater than 1. If you remember, the logic variable block ok was set to false
during the RST My Block. In the main program, the balance loop will continue to run
as long as the ok variable is false. If the ok variable is true, then this indicates that the
robot has fallen and the balance loop will break.

Summary
In this chapter, we examined an impressive program provided by LEGO, the Gyro
Boy. You saw many examples of some programming shortcomings and why there
is a need for order and hierarchy in visual programming along with sufficient
documentation. The Gyro Boy program shows the potential of what can be done
with the LEGO EV3 kit, particularly with advanced programming techniques.

Although you might not think that the EV3 would change much over time, I have
seen the evolution of this kit since I first played with the prerelease alpha versions
of the EV3 in the summer of 2012. Some of those early pieces were made on a 3D
printer and the people from LEGO Education showed me the trick of calibrating
the Gyro by physically unplugging it. We now know you can calibrate the Gyro by
changing the Gyro modes with sensor blocks. You will not find this trick in the Gyro
Boy program, which leads me to think that this was a later development. There have
been subtle unannounced hardware changes. For instance, the Ultrasonic sensors are
manufactured differently than they were a year ago. The new sensors have a wider
cone of emission of the ultrasonic waves, which could affect how your robot detects
obstacles. LEGO constantly works to improve the software and the firmware and
eliminate any bugs. Sometimes these bugs evolve from outside sources. For instance,
for several months the newest versions of MAC OS X failed to communicate via
Bluetooth with the EV3.

Over the course of the writing of this book, I have grown increasingly impressed
with the capabilities of the LEGO EV3 MINDSTORMS kit. The software is a huge
advance over the former NXT MINDSTORMS software, and has many of the
excellent features of LabVIEW. For the past several years, I have taught my physics
classes using LEGO MINDSTORMS NXT kits with students programming in
LabVIEW. The new EV3 LEGO MINDSTORMS software is sufficiently advanced that
I am now migrating to using the EV3 software and hardware with my own students.
I tell my students you are never too old to play with LEGO bricks. My own children,
Alejandro and Leonardo, remind me of this on a daily basis.

Index
A
arrays

working 144-147
Automatic Direction Finder (ADF) 174

B
balancing robot 240
BAL Loop block 246
bang-bang controller 162
beacon tracking 172, 173
bevel gears

gearbox, building with 30-33
Bluetooth communication

enabling 221-225
Bluetooth control 111, 112
brick lights 122, 123
British Telecom Analog (BTA) 102
bugbears, Gyro Boy

programming 243, 244

C
CAD

about 14
LDraw 16
LEGO Digital Designer 15

caster-bot
building, with EV3 Educational

Edition 58-62
Cdrv variables block 248
chassis

building 43, 44
building, with EV3 brick 45, 46
building, with frames 47, 48

building, with motors 48-51
requisites, for EV3 Educational Edition 44
requisites, for EV3 Retail Edition 44

CHK My Block 246, 260, 261
circle

tracking 173, 174
cntrl My Block 246, 259
Color Sensor

about 80-84
using 155

color sensor attachment
building 157-160

communication
Bluetooth communication,

enabling 221-225
Computer-aided Design. See CAD
Content Editor

about 7
code, commenting on 18
features 9-12
page actions, adding 13, 14
pages, adding 13, 14

control program, Gyro Boy 248, 249
Cstr variable block 248

D
data

displaying 121
data logging software 179, 180
dead reckoning

about 129
improving 180-187

Dexter Industries
about 95, 96
URL 96

[264]

Display block 118
Display Steering loop 145
distance controller 149, 150
Distance Measuring

Equipment (DME) arc 174

E
engineering design process 7, 8
engineering notebook 7
EQ My Block

about 246, 257-259
Cdrv variable block 258
pwr variable block 257

EV3
Bluetooth control 111, 112
IR remote buttons 110
Push buttons 105-109
smart device control 112, 113
Wi-Fi control 114, 115

EV3 Educational Edition
caster-bot, building 58-62
tread-bot, building 67-70

EV3 Gyro Boy model. See Gyro Boy
EV3 Retail Edition

skid-bot, building 52-58
tread-bot, building 62-66
versus EV3 Educational Edition 43

F
FIRST LEGO League (FLL) 180
FIRST Tech Challenge (FTC) 97

G
gain constants

analyzing 187, 188
gAng variable block 245
gearbox

building, with bevel gears at
right angles 30-33

building, with worm gear 34-38
gears

building 25-28
gear train 24

GG My Block
about 246, 255, 256
gAng variable block 256
gSpd variable block 255

GM My Block
about 246, 256-257
mDiff variable block 256
mDP1 variable block 257
mDP2 variable block 257
mDP3 variable block 257
mD variable block 257
mPos variable block 256
mSpd variable block 257
mSUM variable block 256

gOS My Block
about 245, 251-254
gChk loop block 252
gMn variable block 252
gMx variable block 252
gSum variable block 252
gyro variable block 252
OSL Loop 253

graphical programming
about 189-191
bang-bang controllers 192, 193
Gyro Sensor, using 192
Infrared Sensor, using 193

GT My Block
about 246, 255
cLo variable block 255
tInt variable block 255

Gyro Boy
about 239, 240
balancing robot 240
bugbears, programming 243, 244
control program 248, 249
features 241
main program 245-247
sensor feedback 242, 243

Gyro Sensor
about 88-90, 170
troubleshooting with 132, 133
URL 88
using 171, 172
using, with Loop block 130, 131

[265]

H
HiTechnic sensors 97-100

I
Image Editor 119, 120
Infrared Sensor

about 92-94
versus Ultrasonic Sensor 150, 151

IR remote buttons 110, 111
IR sensor navigation 172, 173

L
LabVIEW

about 196, 197
Block Diagram 198
Block Diagrams, cleaning 206-208
data 203, 204
Data Viewer 205
Front Panel 197, 206
line following VI 201, 202
loops 200, 201
programming blocks 199, 200
robot tools 203
SubVIs 208-210

large motor
about 24
comparing, with medium motor 24
gears, building 25-28

legacy NXT/RCX lights 124
LEGO Digital Designer (LDD)

about 15
URL 15

LEGO Draw (LDraw)
about 16-18
URL 18

LEGO EV3 sensors
about 76
Color Sensor 80-84
Gyro Sensor 88-90
Infrared Sensor 92-94
Motor Rotation sensors 85-87
Touch Sensor 76-79
Ultrasonic motion sensors 90-92

LEGO MINDSTORMS EV3 software
Home and Educational Editions,

differences 179
LEGO PID controllers

reference links 168
LEGO Publisher (LPub) 16
Loop block

using, with Gyro Sensor 130, 131
using, with Motor Rotation sensors 129, 130

M
main program, Gyro Boy 245-247
MATRIX motor controllers

and metal parts 101
mechanical advantage 21-24
medium motor

about 24
comparing, with large motor 24
rotating, wires used 39-41
rotating, with parallel threads 39-41

messaging, robots
distance, maintaining 227-229
leader, following 226, 227
search and rescue 229-235
search, completing 236, 237

Mike's LEGO Computer Aided
Design (MLCAD) 16

Mindsensors 96, 97
Motor Rotation sensor block 85-87
motors

about 24
large motor 24
medium motor 24

motor spin
programming for 28-30

music 127
My Block

about 138
using 138-144

N
numeric variable blocks

Cdrv 258
Gyro angle (gAng) 258
Gyro speed (gSpd) 258

[266]

motor position (mPos) 258
motor speed (mSpd) 258
time integral (tInt) 258

P
Page Action 13
PID controller 167-170
proportional algorithm 152-155
proportional controller

limitations 167
proportional line follower

about 164
gain and speed, entering 164-167

Push buttons 105-109

R
RobotC

about 210-212
code 212, 213
commands 214, 215
graphical programming 218
remote control 217
variables 216

robots
Bluetooth communication,

enabling 221-225
messaging 226
programming, to move forward 70-72

RobotSquare
URL 241

RST My Block 245, 251

S
Schematic Editor 197
sensor attachment

assembling 157
sensors

about 74
LEGO EV3 sensors 76
Sensor Block 74-76

setpoint, for line tracking
determining 161, 162

skid-bot
building, with EV3 Retail Edition 52-58

Slow Down loop 152
smart device control 112, 113
Sound Editor 125, 126
Steering variable 144
swarming 229
Switch block 134-137
Switch Flow block 139

T
TETRIX

URL 100
third-party sensors

about 94
Dexter Industries 95
HiTechnic sensors 97-100
MATRIX motor controllers and

metal parts 101
Mindsensors 96, 97
Vernier sensors 102, 103

three-level controller 137, 138
Touch Sensor 76-79
tread-bot

building, with EV3 Educational
Edition 67-70

building, with EV3 Retail Edition 62-66
triangulation

about 174
performing 174-177

two-level controller 134-137, 162, 163

U
Ultrasonic Sensor

versus Infrared Sensor 150, 151
Ultrasonic motion sensor 90-92
Universal Asynchronous Receiver/

Transmitter (UART) sensor 240

V
Vernier sensors 102-104
Virtual Instruments (VIs) 197

[267]

W
Wait block 139
Wi-Fi control 114, 115
wires

used, for rotating medium motor 39-41
worm gear

gearbox, building with 34-38

Thank you for buying
Learning LEGO MINDSTORMS EV3

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Instant LEGO MINDSTORMS EV3
ISBN: 978-1-84951-974-8 Paperback: 82 pages

Your guide to building and programming
your very own advanced robot using LEGO
MINDSTORMS EV3

1.	 Step-by-step instructions that will help you to
build and program your own robot.

2.	 Utilize all the sensors in the EV3 kit.

3.	 Write programs with all of the essential
programming commands.

Raspberry Pi Cookbook for
Python Programmers
ISBN: 978-1-84969-662-3 Paperback: 402 pages

Over 50 easy-to-comprehend tailor-made recipes to
get the most out of the Raspberry Pi and unleash its
huge potential using Python

1.	 Install your first operating system, share files
over the network, and run programs remotely.

2.	 Unleash the hidden potential of the Raspberry
Pi's powerful Video Core IV graphics
processor with your own hardware
accelerated 3D graphics.

3.	 Discover how to create your own electronic
circuits to interact with the Raspberry Pi.

Please check www.PacktPub.com for information on our titles

Raspberry Pi Projects for Kid
ISBN: 978-1-78398-222-6 Paperback: 96 pages

Start your own coding adventure with your kids by
creating cool and exciting games and applications on
the Raspberry Pi

1.	 Learn how to use your own Raspberry Pi
device to create your own applications,
including games, interactive maps,
and animations.

2.	 Become a computer programmer by using the
Scratch and Python languages to create all sorts
of cool applications and games.

3.	 Get hands-on with electronic circuits to turn
your Raspberry Pi into a nifty sensor.

Learning ROS for Robotics
Programming
ISBN: 978-1-78216-144-8 Paperback: 332 pages

A practical, instructive, and comprehensive guide
to introduce yourself to ROS the top-notch, leading
robotics framework

1.	 Model your robot on a virtual world and learn
how to simulate it.

2.	 Carry out state-of-the-art Computer
Vision tasks.

3.	 Easy-to-follow, practical tutorials to program
your own robots.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Preface
	Chapter 1: Engineering Notebook
	The engineering design process
	Content Editor features
	New pages and page actions
	Computer-aided Design and building instructions
	LEGO Digital Designer
	LDraw

	Commenting on your code
	Summary

	Chapter 2: Mechanical Design
	Mechanical advantage
	Motors
	Large motors and gears
	Writing a program
	Bevel gears at right angles
	Worm gear
	Using wires and parallel threads
	Summary

	Chapter 3: Drive Train and Chassis
	Chassis
	Skid-bot with the Retail kit
	Caster-bot with the Educational kit
	Tread-bot with the Retail kit
	Tread-bot with the Educational kit
	Programming the robot to move forward
	Summary

	Chapter 4: Sensors and Control
	Using sensors
	Programming blocks
	LEGO EV3 sensors
	Touch Sensors
	Color Sensors
	Motor Rotation sensors
	Gyro Sensors
	Ultrasonic motion sensors
	Infrared Sensors

	Third-party sensors
	Dexter Industries
	Mindsensors
	HiTechnic sensors
	MATRIX motor controllers and metal parts
	Vernier sensors

	Summary

	Chapter 5: Interacting with EV3
	Push buttons
	IR remote buttons
	Bluetooth control
	Smart device control
	Wi-Fi control
	Summary

	Chapter 6: Output from EV3
	Display
	Image Editor
	Display data
	Brick lights
	Legacy NXT/RCX lights
	Sound
	Music
	Summary

	Chapter 7: Advanced Programming
	Loop and the Motor Rotation sensors
	Loop and the Gyro Sensor
	Troubleshooting with the Gyro Sensor

	Switch or two-level controller
	Three-level controller
	Subroutines or My Blocks
	Arrays
	Summary

	Chapter 8: Advanced Programming and Control
	Distance controller
	Infrared versus Ultrasonic
	Proportional algorithm
	Line following using the Color Sensor
	Setpoint for line tracking
	Two-level or bang-bang controller
	Proportional line follower
	Entering gain and speed

	PID controller
	Gyro Sensor
	IR sensor navigation and beacon tracking
	Tracking a circle
	Triangulation
	Summary

	Chapter 9: Experiment Software and Data Logging
	Data logging software
	Improving dead reckoning
	Analyzing gain constants
	Graphical programming
	Other bang-bang controllers
	Summary

	Chapter 10: Other Programming Languages
	LabVIEW
	Front Panel and Block Diagram
	Programming blocks
	Loops
	Line following VI
	Robot tools
	Data
	Front Panel and clean Block Diagrams
	SubVIs

	RobotC
	Simple code
	Commands
	Variables
	Remote control
	Graphical programming

	Summary

	Chapter 11: Communication between Robots
	Enabling communication
	Messaging
	Follow the leader
	Maintain a distance
	Search and rescue
	Completing the search

	Summary

	Chapter 12: Advanced Robot – Gyro Boy
	Concept of a balancing robot
	The Gyro Boy model
	Sensor feedback

	Programming bugbears
	The main program
	The control program
	The RST My Block
	The gOS My Block
	The GT My Block
	The GG My Block
	The GM My Block
	The EQ My Block
	The Cntrl My Block
	The CHK My Block
	Summary

	Index

